def _build_plan(self, plan_factory, device_params, alpha, beta, seed): plan = plan_factory() bijection = philox(64, 2) # Keeping the kernel the same so it can be cached. # The seed will be passed as the computation parameter instead. keygen = KeyGenerator.create(bijection, seed=numpy.int32(0)) sampler = normal_bm(bijection, numpy.float64) squeezing = plan.persistent_array(self._system.squeezing) decoherence = plan.persistent_array(self._system.decoherence) plan.kernel_call(TEMPLATE.get_def("generate_input_state"), [alpha, beta, squeezing, decoherence, seed], kernel_name="generate", global_size=alpha.shape, render_kwds=dict( system=self._system, representation=self._representation, Representation=Representation, bijection=bijection, keygen=keygen, sampler=sampler, ordering=ordering, exp=functions.exp(numpy.float64), mul_cr=functions.mul(numpy.complex128, numpy.float64), add_cc=functions.add(numpy.complex128, numpy.complex128), )) return plan
def test_computation_general(thr_and_double): size = 10000 batch = 101 thr, double = thr_and_double dtype = numpy.float64 if double else numpy.float32 mean, std = -2, 10 bijection = philox(64, 4) sampler = normal_bm(bijection, dtype, mean=mean, std=std) rng = CBRNG(Type(dtype, shape=(batch, size)), 1, sampler) check_computation(thr, rng, mean=mean, std=std)
def get_sampler(self, double): dtype = numpy.complex128 if double else numpy.complex64 return normal_bm(self.bijection, dtype, mean=self.mean, std=self.std)
def get_sampler(self, double): dtype = numpy.float64 if double else numpy.float32 return normal_bm(self.bijection, dtype, mean=self.mean, std=self.std)
def _build_plan(self, plan_factory, device_params, alpha, beta, alpha_i, beta_i, seed): plan = plan_factory() system = self._system representation = self._representation unitary = plan.persistent_array(self._system.unitary) needs_noise_matrix = representation != Representation.POSITIVE_P and system.needs_noise_matrix( ) mmul = MatrixMul(alpha, unitary, transposed_b=True) if not needs_noise_matrix: # TODO: this could be sped up for repr != POSITIVE_P, # since in that case alpha == conj(beta), and we don't need to do two multuplications. mmul_beta = MatrixMul(beta, unitary, transposed_b=True) trf_conj = self._make_trf_conj() mmul_beta.parameter.matrix_b.connect(trf_conj, trf_conj.output, matrix_b_p=trf_conj.input) plan.computation_call(mmul, alpha, alpha_i, unitary) plan.computation_call(mmul_beta, beta, beta_i, unitary) else: noise_matrix = system.noise_matrix() noise_matrix_dev = plan.persistent_array(noise_matrix) # If we're here, it's not positive-P, and alpha == conj(beta). # This means we can just calculate alpha, and then build beta from it. w = plan.temp_array_like(alpha) temp_alpha = plan.temp_array_like(alpha) plan.computation_call(mmul, temp_alpha, alpha_i, unitary) bijection = philox(64, 2) # Keeping the kernel the same so it can be cached. # The seed will be passed as the computation parameter instead. keygen = KeyGenerator.create(bijection, seed=numpy.int32(0)) sampler = normal_bm(bijection, numpy.float64) plan.kernel_call(TEMPLATE.get_def("generate_apply_matrix_noise"), [w, seed], kernel_name="generate_apply_matrix_noise", global_size=alpha.shape, render_kwds=dict( bijection=bijection, keygen=keygen, sampler=sampler, mul_cr=functions.mul(numpy.complex128, numpy.float64), add_cc=functions.add(numpy.complex128, numpy.complex128), )) noise = plan.temp_array_like(alpha) plan.computation_call(mmul, noise, w, noise_matrix_dev) plan.kernel_call(TEMPLATE.get_def("add_noise"), [alpha, beta, temp_alpha, noise], kernel_name="add_noise", global_size=alpha.shape, render_kwds=dict( add=functions.add(numpy.complex128, numpy.complex128), conj=functions.conj(numpy.complex128))) return plan
def get_sampler(self, bijection, double): dtype = numpy.complex128 if double else numpy.complex64 return normal_bm(bijection, dtype, mean=self.mean, std=self.std)
def get_sampler(self, bijection, double): dtype = numpy.float64 if double else numpy.float32 return normal_bm(bijection, dtype, mean=self.mean, std=self.std)