def e1001_3T_ucf101(): set_init_1() project_variable.model_number = 20 project_variable.experiment_number = 1001 project_variable.sheet_number = 23 project_variable.device = 0 project_variable.end_epoch = 100 project_variable.batch_size = 30 project_variable.batch_size_val_test = 30 project_variable.load_model = True # exp, model, epoch, run project_variable.load_from_fast = True project_variable.use_dali = True project_variable.dali_workers = 32 project_variable.dali_iterator_size = ['all', 'all', 0] project_variable.nas = False project_variable.stop_at_collapse = True project_variable.early_stopping = True project_variable.optimizer = 'adam' project_variable.learning_rate = 0.00005 project_variable.use_adaptive_lr = True main_file.run(project_variable)
def e4_conv3DTTN_jester(): set_init_1() project_variable.model_number = 16 project_variable.experiment_number = 4 project_variable.sheet_number = 22 project_variable.device = 0 project_variable.end_epoch = 20 project_variable.repeat_experiments = 3 project_variable.batch_size = 2 * 27 # if you want all the data: train: 4200, val: 250, test: 250 # project_variable.data_points = [300 * 27, 50 * 27, 0 * 27] project_variable.data_points = [30 * 27, 5 * 27, 0 * 27] project_variable.stop_at_collapse = True project_variable.early_stopping = True project_variable.optimizer = 'adam' project_variable.learning_rate = 0.0003 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [16, 32, 64, 128, 256] project_variable.transformation_groups = project_variable.num_out_channels project_variable.k0_groups = project_variable.num_out_channels main_file.run(project_variable)
def e41_conv3T_jester(): set_init_1() project_variable.model_number = 26 # GN 3T dynamic project_variable.experiment_number = 41 project_variable.sheet_number = 22 project_variable.device = 2 project_variable.end_epoch = 100 project_variable.repeat_experiments = 1 project_variable.batch_size = 27 project_variable.batch_size_val_test = 27 project_variable.load_model = [30, 23, 28, 0] project_variable.load_from_fast = True project_variable.only_theta_final_layer = True project_variable.use_dali = True project_variable.dali_workers = 32 project_variable.dali_iterator_size = ['all', 'all', 0] project_variable.nas = False project_variable.stop_at_collapse = True project_variable.early_stopping = True project_variable.optimizer = 'adam' project_variable.learning_rate = 0.005 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [0] # wait_for_gpu(wait=True, device_num=project_variable.device) main_file.run(project_variable)
def vis_conv3DTTN_jester(): set_init_1() project_variable.model_number = 20 project_variable.experiment_number = 1011010010010 # TODO setup for visualization project_variable.sheet_number = 22 project_variable.device = 0 project_variable.end_epoch = 1 project_variable.repeat_experiments = 1 project_variable.batch_size = 1 * 27 project_variable.data_points = [0 * 27, 1 * 27, 0 * 27] project_variable.load_model = [10, 20, 2, 0] # exp, model, epoch, run project_variable.inference_only_mode = True project_variable.do_xai = True project_variable.which_methods = ['gradient_method'] project_variable.which_layers = ['conv1'] project_variable.which_channels = [np.array([0, 1])] project_variable.optimizer = 'adam' project_variable.learning_rate = 0.00005 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [0] main_file.run(project_variable)
def eRESNET_jester(): set_init_1() project_variable.model_number = 20 project_variable.experiment_number = 8538953849588588 project_variable.sheet_number = 22 project_variable.device = 0 project_variable.end_epoch = 3 project_variable.repeat_experiments = 1 project_variable.batch_size = 1 * 27 project_variable.data_points = [1 * 27, 1 * 27, 0 * 27] project_variable.load_model = True # project_variable.use_dali = True # project_variable.dali_workers = 32 # project_variable.dali_iterator_size = ['all', 'all', 0] # project_variable.nas = False # project_variable.stop_at_collapse = True # project_variable.early_stopping = True project_variable.optimizer = 'adam' project_variable.learning_rate = 0.0000005 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [0] main_file.run(project_variable)
def e_test_3D_jester(): set_init_1() project_variable.model_number = 14 project_variable.experiment_number = 1792792989823 project_variable.sheet_number = 22 project_variable.device = 0 project_variable.end_epoch = 30 project_variable.repeat_experiments = 1 project_variable.data_points = [30 * 27, 5 * 27, 0 * 27] project_variable.optimizer = 'adam' project_variable.learning_rate = 5e-4 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [32, 32, 64] project_variable.transformation_groups = project_variable.num_out_channels project_variable.k0_groups = project_variable.num_out_channels project_variable.do_xai = False project_variable.which_methods = ['gradient_method'] project_variable.which_layers = ['conv1', 'conv2', 'conv3'] project_variable.which_channels = [ np.arange(2), np.arange(2), np.arange(2) ] main_file.run(project_variable)
def e22_conv3DTTN_jester(): set_init_1() project_variable.model_number = 20 project_variable.experiment_number = 22 project_variable.sheet_number = 22 project_variable.device = 0 project_variable.end_epoch = 1 project_variable.repeat_experiments = 1 project_variable.batch_size = 1 project_variable.batch_size_val_test = 1 project_variable.xai_only_mode = True project_variable.use_dali = True project_variable.dali_workers = 32 project_variable.load_model = [13, 20, 14, 0] # exp, model, epoch, run # project_variable.inference_only_mode = True project_variable.do_xai = True project_variable.which_methods = ['gradient_method'] project_variable.which_layers = ['conv1'] project_variable.which_channels = [np.array([0, 1])] project_variable.optimizer = 'adam' project_variable.learning_rate = 0.00005 project_variable.use_adaptive_lr = False project_variable.num_out_channels = [0] main_file.run(project_variable)
def e0_C3D_omgemo(): project_variable.model_number = 11 project_variable.end_epoch = 100 project_variable.dataset = 'omg_emotion' project_variable.device = 2 project_variable.optimizer = 'adam' project_variable.learning_rate = 5e-5 # project_variable.use_adaptive_lr = True project_variable.num_out_channels = [12, 22] project_variable.data_points = [50 * 7, 3 * 7, 5 * 7] project_variable.label_size = 7 project_variable.batch_size = 14 project_variable.load_num_frames = 60 # 60 project_variable.label_type = 'categories' project_variable.repeat_experiments = 1 project_variable.save_only_best_run = True project_variable.same_training_data = True project_variable.randomize_training_data = True project_variable.balance_training_data = True project_variable.experiment_state = 'new' project_variable.sheet_number = 100 project_variable.eval_on = 'test' project_variable.experiment_number = 1 main_file.run(project_variable)
def e28_conv3D_jester(): set_init_1() project_variable.model_number = 25 project_variable.experiment_number = 28 project_variable.sheet_number = 22 project_variable.device = 0 project_variable.end_epoch = 100 project_variable.repeat_experiments = 1 project_variable.batch_size = 19 project_variable.batch_size_val_test = 19 project_variable.load_model = True project_variable.load_from_fast = True project_variable.use_dali = True project_variable.dali_workers = 32 project_variable.dali_iterator_size = ['all', 'all', 0] project_variable.nas = False project_variable.stop_at_collapse = True project_variable.early_stopping = True project_variable.optimizer = 'adam' project_variable.learning_rate = 0.000005 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [0] main_file.run(project_variable)
def e_test_3DTTN_dhg(): set_init_3() project_variable.end_epoch = 1 project_variable.repeat_experiments = 1 project_variable.experiment_number = 777656767 project_variable.sheet_number = 21 project_variable.device = 2 project_variable.model_number = 11 project_variable.data_points = [0 * 14, 1 * 14, 0 * 14] project_variable.batch_size = 1 * 14 project_variable.inference_only_mode = True project_variable.load_model = [68, 11, 199, 0] project_variable.optimizer = 'adam' project_variable.learning_rate = 1e-4 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [6, 16] project_variable.do_xai = True # project_variable.return_ind = True project_variable.which_methods = ['gradient_method'] # if 'zeiler2014' in project_variable.which_methods: # project_variable.return_ind = True # project_variable.which_layers = ['conv1'] # project_variable.which_channels = [np.arange(2)] project_variable.which_layers = ['conv1', 'conv2'] project_variable.which_channels = [np.arange(6), np.arange(16)] main_file.run(project_variable)
def e71_3D_dhg(): set_init_3() project_variable.end_epoch = 1 project_variable.repeat_experiments = 1 project_variable.experiment_number = 71 project_variable.sheet_number = 21 project_variable.device = 2 project_variable.model_number = 12 project_variable.data_points = [0 * 14, 2 * 14, 0 * 14] project_variable.batch_size = 2 * 14 project_variable.inference_only_mode = True project_variable.load_model = [69, 12, 99, 3] project_variable.optimizer = 'adam' project_variable.learning_rate = 0.001 project_variable.use_adaptive_lr = False project_variable.num_out_channels = [6, 16] project_variable.do_xai = True # project_variable.which_methods = ['gradient_method'] project_variable.which_methods = [ 'erhan2009', 'zeiler2014', 'gradient_method' ] project_variable.return_ind = True project_variable.which_layers = ['conv1', 'conv2'] project_variable.which_channels = [np.arange(6), np.arange(16)] main_file.run(project_variable)
def e67_test_3D_dhg(): set_init_3() project_variable.end_epoch = 100 project_variable.repeat_experiments = 1 project_variable.experiment_number = 67 project_variable.sheet_number = 21 project_variable.device = 2 project_variable.model_number = 11 project_variable.data_points = [140 * 14, 20 * 14, 1 * 14] project_variable.batch_size = 2 * 14 project_variable.optimizer = 'adam' project_variable.learning_rate = 1e-4 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [6, 16] project_variable.do_xai = True project_variable.which_methods = ['erhan2009', 'zeiler2014'] if 'zeiler2014' in project_variable.which_methods: project_variable.return_ind = True project_variable.which_layers = ['conv1', 'conv2'] project_variable.which_channels = [np.arange(6), np.arange(16)] main_file.run(project_variable)
def e36_conv3DTTN_jester(): set_init_1() project_variable.model_number = 20 # RN18 3T project_variable.experiment_number = 36 project_variable.sheet_number = 22 project_variable.device = 2 project_variable.end_epoch = 100 project_variable.repeat_experiments = 1 project_variable.batch_size = 32 project_variable.batch_size_val_test = 32 project_variable.load_model = [32, 20, 13, 0] project_variable.load_from_fast = True project_variable.use_dali = True project_variable.dali_workers = 32 project_variable.dali_iterator_size = ['all', 'all', 0] project_variable.nas = False project_variable.stop_at_collapse = True project_variable.early_stopping = True project_variable.optimizer = 'adam' project_variable.learning_rate = 0.00005 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [0] wait_for_gpu(wait=True, device_num=project_variable.device) main_file.run(project_variable)
def e001_3T_kinetics(): set_init_1() project_variable.model_number = 23 # googlenet project_variable.experiment_number = 2000 project_variable.sheet_number = 23 project_variable.device = 1 project_variable.end_epoch = 200 project_variable.batch_size = 1 project_variable.batch_size_val_test = 1 project_variable.inference_only_mode = True project_variable.load_model = False project_variable.load_from_fast = True project_variable.use_dali = True project_variable.dali_workers = 32 project_variable.dali_iterator_size = ['all', 'all', 0] project_variable.nas = False project_variable.stop_at_collapse = True project_variable.early_stopping = True project_variable.optimizer = 'adam' project_variable.learning_rate = 0.00005 project_variable.use_adaptive_lr = True main_file.run(project_variable)
def e2(): project_variable.device = 1 project_variable.model_number = 0 project_variable.experiment_number = 2 project_variable.load_model = [2, 0, 35] if not project_variable.debug_mode: project_variable.start_epoch = 35 main_file.run(project_variable)
def pilot_2(): project_variable.device = 0 project_variable.model_number = 0 project_variable.experiment_number = 1 project_variable.end_epoch = 1 project_variable.load_model = [0, 0, 99] project_variable.save_data = False main_file.run(project_variable)
def e3_3D_omgemo(): set_init_1() project_variable.experiment_number = 3 project_variable.sheet_number = 20 project_variable.device = 0 project_variable.learning_rate = 1e-3 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [6, 16] main_file.run(project_variable)
def e6_3D_omgemo(): set_init_1() project_variable.experiment_number = 6 project_variable.sheet_number = 20 project_variable.device = 0 project_variable.learning_rate = 1e-4 project_variable.use_adaptive_lr = False project_variable.num_out_channels = [12, 22] main_file.run(project_variable)
def pilot(): project_variable.device = 0 project_variable.model_number = 0 project_variable.experiment_number = 0 project_variable.batch_size = 20 # project_variable.save_model = False # project_variable.save_data = False main_file.run(project_variable)
def e1_3D_omgemo(): set_init_1() project_variable.experiment_state = 'crashed' project_variable.experiment_number = 1 project_variable.sheet_number = 20 project_variable.device = 2 project_variable.learning_rate = 1e-3 project_variable.use_adaptive_lr = False project_variable.num_out_channels = [6, 16] main_file.run(project_variable)
def e39_3D_dhg(): set_init_1() project_variable.experiment_number = 39 project_variable.sheet_number = 21 project_variable.device = 0 project_variable.optimizer = 'adam' project_variable.learning_rate = 1e-3 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [8, 18] main_file.run(project_variable)
def e33_3D_dhg(): set_init_2() project_variable.experiment_number = 33 project_variable.sheet_number = 21 project_variable.device = 1 project_variable.optimizer = 'sgd' project_variable.learning_rate = 5e-7 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [6, 16] main_file.run(project_variable)
def e10_3D_dhg(): set_init_1() project_variable.experiment_number = 10 project_variable.sheet_number = 21 project_variable.device = 2 project_variable.optimizer = 'sgd' project_variable.learning_rate = 1e-8 project_variable.use_adaptive_lr = False project_variable.num_out_channels = [6, 16] main_file.run(project_variable)
def e44_3D_dhg(): set_init_2() project_variable.experiment_number = 44 project_variable.sheet_number = 21 project_variable.device = 2 project_variable.optimizer = 'adam' project_variable.learning_rate = 1e-4 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [12, 22] main_file.run(project_variable)
def e17_3D_dhg(): set_init_1() project_variable.experiment_number = 17 project_variable.sheet_number = 21 project_variable.device = 2 project_variable.randomize_training_data = False project_variable.optimizer = 'adam' project_variable.learning_rate = 1e-3 project_variable.use_adaptive_lr = False project_variable.num_out_channels = [6, 16] main_file.run(project_variable)
def e48_3D_dhg(): set_init_2() project_variable.experiment_number = 48 project_variable.sheet_number = 21 project_variable.device = 0 project_variable.optimizer = 'adam' project_variable.learning_rate = 1e-4 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [12, 22] project_variable.transformation_groups = project_variable.num_out_channels project_variable.k0_groups = project_variable.num_out_channels main_file.run(project_variable)
def e1_3D_jester(): set_init_1() project_variable.model_number = 12 project_variable.experiment_number = 1 project_variable.sheet_number = 22 project_variable.device = 0 project_variable.data_points = [50 * 27, 5 * 27, 0 * 27] project_variable.optimizer = 'adam' project_variable.learning_rate = 1e-3 project_variable.use_adaptive_lr = False project_variable.num_out_channels = [6, 16] main_file.run(project_variable)
def e63_3D_dhg(): set_init_3() project_variable.experiment_number = 63 project_variable.sheet_number = 21 project_variable.device = 0 project_variable.model_number = 11 project_variable.data_points = [10 * 14, 20 * 14, 40 * 14] project_variable.batch_size = 2 * 14 project_variable.optimizer = 'adam' project_variable.learning_rate = 1e-4 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [6, 16] main_file.run(project_variable)
def e10_conv3DTTN_jester(): set_init_1() project_variable.model_number = 20 project_variable.experiment_number = 10 project_variable.sheet_number = 22 project_variable.device = 0 project_variable.end_epoch = 3 project_variable.repeat_experiments = 1 project_variable.batch_size = 1 * 27 project_variable.data_points = [1 * 27, 1 * 27, 0 * 27] project_variable.load_model = True project_variable.optimizer = 'adam' project_variable.learning_rate = 0.00005 project_variable.use_adaptive_lr = True project_variable.num_out_channels = [0] main_file.run(project_variable)
def run_single_experiment(project_variable, lr, epochs, out_channels, device, model_number): project_variable.nas = True project_variable.device = device project_variable.end_epoch = epochs project_variable.learning_rate = lr project_variable.num_out_channels = out_channels project_variable.model_number = model_number project_variable.save_data = False project_variable.save_model = False project_variable.save_graphs = False project_variable.dataset = 'jester' # if you want all the data: train: 150, val: 10, test: 10 # total_dp = {'train': 118562, 'val': 7393, 'test': 7394} project_variable.num_in_channels = 3 # project_variable.data_points = [2 * 27, 1 * 27, 0 * 27] project_variable.batch_size = 2 * 27 project_variable.use_dali = True project_variable.dali_workers = 8 # for now, use 'all' for val, since idk how to reset the iterator project_variable.dali_iterator_size = [5 * 27, 'all', 0] project_variable.label_size = 27 project_variable.load_num_frames = 30 project_variable.label_type = 'categories' project_variable.use_adaptive_lr = True project_variable.repeat_experiments = 1 project_variable.save_only_best_run = True project_variable.same_training_data = True project_variable.randomize_training_data = True project_variable.balance_training_data = True project_variable.theta_init = None project_variable.srxy_init = 'eye' project_variable.weight_transform = 'seq' project_variable.experiment_state = 'new' project_variable.eval_on = 'val' project_variable.experiment_number = 1792792989823 project_variable.sheet_number = 22 project_variable.repeat_experiments = 1 project_variable.data_points = [30 * 27, 5 * 27, 0 * 27] project_variable.optimizer = 'adam' return main_file.run(project_variable)