コード例 #1
0
def lastor_redistr(client_coord, fp_to_bw, fp_to_coord, threshold):
    """
    Redistributes LASTor guard probabilities.
    threshold = selection probability to fraction of the cost of the network
                contributed
    """

    if threshold < 1:
        print("Error: threshold must be at least 1.")
        return None

    total_cost = 0
    for fp, bw in fp_to_bw.items():
        total_cost += relays.get_cost(bw)

    thresh = threshold / total_cost

    ratios = dict.fromkeys(fp_to_bw, 0)
    excess = 1

    curr_fps = list(fp_to_coord.keys())
    cnt = 1
    while excess > 0:
        print(f'----- Round {cnt} -----')
        cnt += 1

        if len(curr_fps) == 0:
            break

        curr_fp_to_coord = {fp: fp_to_coord[fp] for fp in curr_fps}
        curr_distr = lastor.compute_lt_selection_probs(client_coord,
                                                       curr_fp_to_coord)
        print(f'sum distr (~1): {sum(curr_distr.values())}')

        norm = excess
        print(f'norm: {norm}')

        num_over = 0
        excess = 0
        for fp in list(curr_fps):
            cost = relays.get_cost(fp_to_bw[fp])
            ratio = curr_distr[fp] / cost * norm
            ratios[fp] += ratio

            if ratios[fp] > thresh:
                excess += ((ratios[fp] - thresh) * cost)
                ratios[fp] = thresh
                curr_fps.remove(fp)

                num_over += 1

        print(f'num over thresh: {num_over}')

    redistr = {}
    for fp, val in ratios.items():
        prob = val * relays.get_cost(fp_to_bw[fp])
        redistr[fp] = prob

    return redistr
コード例 #2
0
def disp_targeted_split_table(num_relays, bw_resource):
    """
    Prints table showing IP splitting effects on targeted attack
    against client in NYC (40.6943, -73.9249).

    Format:
    Relay # |relCost | vanilla prob | cumulative targ prob | coordinate
    """
    
    print("Targeted IP splitting")
    client_coord = (40.6943, -73.9249)
    
    # emp_prob = 0
    mal_coords_lst = []
    fname = "attack_split_targ/malguardprobs.json"
    res = json.load(open(fname, 'r'))

    for coord, prob in res.items():
        lat = float(coord[1:-1].split(',')[0])
        lon = float(coord[1:-1].split(',')[1])
        mal_coords_lst.append((lat, lon))

    v_distr, v_prob = vanilla.compute_vanilla_guard_distr(guard_to_bw, bw_resource)
    for i in range(0, num_relays): 
        cost = num_relays * relays.get_cost(bw_resource / num_relays)
        tot_cost = sum(guard_to_cost.values()) + cost
        rel_cost = cost / tot_cost

        # untargeted with 1 client in client_lst   
        res = untargeted_prob([client_coord], mal_coords_lst[:i+1], bw_resource)
        print(f"{i+1} | relCost: {rel_cost} | VT prob: {v_prob} | targ LT prob: {res[0]} | {mal_coords_lst[i]}")
    
    return mal_coords_lst
コード例 #3
0
def disp_untargeted_split_table(num_relays, bw_resource):
    """
    Prints table showing IP splitting effects on untargeted attack.

    Format:
    Relay # |relCost | vanilla prob | avg untarg prob | max untarg prob with client coord | best mal coordinate
    """

    print("Untargeted IP splitting")
    client_lst = json.load(open("../data/geoclients200.json"))
    
    mal_coords_lst = []
    fname = "attack_split_untarg/malguardprobs.json"
    res = json.load(open(fname, 'r'))

    for coord, prob in res.items():
        lat = float(coord[1:-1].split(',')[0])
        lon = float(coord[1:-1].split(',')[1])
        mal_coords_lst.append((lat, lon))


    v_distr, v_prob = vanilla.compute_vanilla_guard_distr(guard_to_bw, bw_resource)
    for i in range(0, num_relays):    
        cost = num_relays * relays.get_cost(bw_resource / num_relays)
        tot_cost = sum(guard_to_cost.values()) + cost
        rel_cost = cost / tot_cost

        res = untargeted_prob(client_lst, mal_coords_lst[:i+1], bw_resource)
        print(f"{i+1} | relCost: {rel_cost} | VT prob: {v_prob} | avg prob: {res[0]} | max prob: {res[2]} |{mal_coords_lst[i]}")

    return mal_coords_lst
コード例 #4
0
def counterraptor_init_ratios(client_as, fp_to_bw, fp_to_as, fp_to_cost):
    """
    Returns selection probability to cost ratio for client_as
    before applying redistribution algorithm to Counter-RAPTOR.
    """

    client_to_all_res = json.load(
        open("../counterraptor/all_reachable_resilience.json"))
    client_to_guard_res = json.load(
        open("../counterraptor/cg_resilience.json"))
    alpha = 0.5
    sample_size = 0.1 * len(fp_to_bw)

    total_cost = sum(fp_to_cost.values())

    ratios = dict.fromkeys(fp_to_bw, 0)
    distr = counterraptor.compute_cr_selection_probs(client_as, fp_to_bw,
                                                     fp_to_as,
                                                     client_to_all_res,
                                                     client_to_guard_res,
                                                     alpha, sample_size)

    for fp, prob in distr.items():
        cost = relays.get_cost(fp_to_bw[fp])
        ratio = prob * total_cost / cost
        ratios[fp] = ratio

    return ratios
コード例 #5
0
def disp_untargeted_split_table_avg(client_as_lst, best_as_untargeted,
                                    bw_resource, num_relays_lst):
    """
    Prints table showing varying relays effect on untargeted attack
    (average success).
    """

    v_guard_probs, v_prob = vanilla.compute_vanilla_guard_distr(
        guard_to_bw, bw_resource)

    for num_relays in num_relays_lst:
        sum_probs = 0
        for client_as in client_as_lst:
            all_guard_probs, mal_guard_prob = cr.compute_cr_guard_distr(
                client_as, best_as_untargeted, client_to_all_res,
                client_to_guard_res, guard_to_bw, ip_to_as, num_relays,
                bw_resource, alpha, sample_size)
            sum_probs += mal_guard_prob
        mal_prob = sum_probs / len(client_as_lst)

        cost = num_relays * relays.get_cost(bw_resource / num_relays)
        tot_cost = sum(guard_to_cost.values()) + cost
        rel_cost = cost / tot_cost

        print(
            f"{num_relays} | relCost: {rel_cost} | VT prob: {v_prob} | utarg CR prob: {mal_prob} | AS{best_as_untargeted}"
        )
コード例 #6
0
def disp_max_advantages(client_as_lst, bw_resources_lst, best_as_dict):
    """
    Display maximum attacker advantage in untargeted attack compared to
    Vanilla Tor and relCost.
    """
    for i in range(0, len(bw_resources_lst)):
        bw_resource = bw_resources_lst[i]
        v_guard_probs, v_prob = vanilla.compute_vanilla_guard_distr(
            guard_to_bw, bw_resource)
        rel_cost = relays.get_cost(bw_resource) / (
            relays.get_cost(bw_resource) + sum(guard_to_cost.values()))

        best_as_untargeted = best_as_dict[str(bw_resource)]
        untargeted_prob_triple = untargeted_prob(client_as_lst,
                                                 [best_as_untargeted],
                                                 [bw_resource], pfi_instance)
        print(bw_resource)
        print("avg")
        print(untargeted_prob_triple[0] / v_prob)
        print(untargeted_prob_triple[0] / rel_cost)

        print("max")
        print(untargeted_prob_triple[2][1] / v_prob)
        print(untargeted_prob_triple[2][1] / rel_cost)
コード例 #7
0
def lastor_init_ratios(client_coord, fp_to_bw, fp_to_coord, fp_to_cost):
    """
    Returns selection probability to cost ratio for client_coord
    before applying redistribution algorithm to LASTor.
    """

    total_cost = sum(fp_to_cost.values())

    ratios = dict.fromkeys(fp_to_bw, 0)
    distr = lastor.compute_lt_selection_probs(client_coord, fp_to_coord)

    for fp, prob in distr.items():
        cost = relays.get_cost(fp_to_bw[fp])
        ratio = prob * total_cost / cost
        ratios[fp] = ratio

    return ratios
コード例 #8
0
def denasa_init_ratios(client_as, fp_to_bw, fp_to_as, fp_to_cost):
    """
    Returns selection probability to cost ratio for client_as
    before applying redistribution algorithm to DeNASA.
    """

    total_cost = sum(fp_to_cost.values())

    ratios = dict.fromkeys(fp_to_bw, 0)
    distr = denasa.compute_dn_selection_probs(client_as, fp_to_bw, fp_to_as,
                                              all_ases, pfi_instance)

    for fp, prob in distr.items():
        cost = relays.get_cost(fp_to_bw[fp])
        ratio = prob * total_cost / cost
        ratios[fp] = ratio

    return ratios
コード例 #9
0
def disp_targeted_split_table(client_as, bw_resource, num_relays_lst):
    """
    Prints table showing varying relays effect targeted attack.
    """

    best_as = cr.compute_attack_as([client_as], client_to_all_res,
                                   client_to_guard_res, guard_to_bw, ip_to_as,
                                   sample_size)
    v_guard_probs, v_prob = vanilla.compute_vanilla_guard_distr(
        guard_to_bw, bw_resource)

    for num_relays in num_relays_lst:
        all_guard_probs, mal_prob = cr.compute_cr_guard_distr(
            client_as, best_as, client_to_all_res, client_to_guard_res,
            guard_to_bw, ip_to_as, num_relays, bw_resource, alpha, sample_size)

        cost = num_relays * relays.get_cost(bw_resource / num_relays)
        tot_cost = sum(guard_to_cost.values()) + cost
        rel_cost = cost / tot_cost

        print(
            f"{num_relays} | relCost: {rel_cost} | VT prob: {v_prob} | targ CR prob: {mal_prob} | AS{best_as}"
        )
コード例 #10
0
def disp_untargeted_split_table_avg(client_as_lst, bw_resource,
                                    num_relays_lst):
    """
    Prints table showing varying relays effect on untargeted attack
    (average success).

    Format:
    Relay # | relCost | vanilla prob | avg untarg prob | max untarg prob with client AS 
    """

    v_guard_probs, v_prob = vanilla.compute_vanilla_guard_distr(
        guard_to_bw, bw_resource)

    for num_relays in num_relays_lst:
        inDir = f"untarg{num_relays}"
        mal_guard_as_lst = []
        for i in range(num_relays):
            fname = f"{inDir}/tempbeststate{i}.json"
            best_state = json.load(open(fname))
            mal_guard_as_lst.append(best_state[1])

        bw_per_guard = bw_resource / num_relays
        mal_guard_bw_lst = [bw_per_guard] * num_relays

        res_triple = untargeted_prob(client_as_lst, mal_guard_as_lst,
                                     mal_guard_bw_lst, pfi_instance)
        avg_prob = res_triple[0]
        hi_prob = res_triple[2]  # tuple of (client AS, prob)

        cost = num_relays * relays.get_cost(bw_resource / num_relays)
        tot_cost = sum(guard_to_cost.values()) + cost
        rel_cost = cost / tot_cost

        print(
            f"{num_relays} | relCost: {rel_cost} | VT prob: {v_prob} | avg prob: {avg_prob} | max prob: {hi_prob}"
        )
コード例 #11
0
sys.path.append('..')
sys.path.append('../vanilla')

import numpy as np
import argparse
import lastor as lt
import vanilla
import relays
import json
import pickle
import operator
import geopy.distance


guard_to_bw = pickle.load(open("../guard_info/guard_to_bw.pickle", "rb"))
guard_to_cost = {guard: relays.get_cost(bw) for guard, bw in guard_to_bw.items()}
relay_ips = [ip.strip() for ip in open('../data/relay_ips.txt', 'r').readlines()]

def make_prob_matrix(client_lst, mal_coord, bw_resources_lst):
    """
    Returns a numpy matrix where every row corresponds to the bandwidth

    col_0: Vanilla Tor selection probability
    col_1: Untargeted LT average selection probability (across all clients)
    col_2: Untargeted LT lowest selection probability
    col_3: Untargeted LT highest selection probability

    client_lst: client coordinates
    mal_coord:  malicious guard placement (single relay)
    bw_resources_lst: list of bandwidth resources
    """
コード例 #12
0
ip_to_as = json.load(open("../guard_info/ip_to_as.json"))
all_ases = [
    asn.strip() for asn in open("../data/relay_ases.txt", 'r').readlines()
]

guard_to_bw = pickle.load(open("../guard_info/guard_to_bw.pickle", "rb"))

fp_to_bw = {g.fingerprint: bw for (g, bw) in guard_to_bw.items()}
fp_to_as = {
    g.fingerprint: ip_to_as[g.address]
    for (g, bw) in guard_to_bw.items()
}
fp_to_coord = pickle.load(open("../guard_info/guard_fps_to_coord.pickle",
                               "rb"))
fp_to_cost = {fp: relays.get_cost(bw) for fp, bw in fp_to_bw.items()}


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--dump', action='store_true')
    return parser.parse_args()


# --------------------------------------------------------------


def counterraptor_init_ratios(client_as, fp_to_bw, fp_to_as, fp_to_cost):
    """
    Returns selection probability to cost ratio for client_as
    before applying redistribution algorithm to Counter-RAPTOR.
コード例 #13
0
def counterraptor_redistr(client_as, fp_to_bw, fp_to_as, threshold):
    """
    Redistributes Counter-RAPTOR guard probabilities.
    threshold = selection probability to fraction of the cost of the network
                contributed
    """

    if threshold < 1:
        print("Error: threshold must be at least 1.")
        return None

    client_to_all_res = json.load(
        open("../counterraptor/all_reachable_resilience.json"))
    client_to_guard_res = json.load(
        open("../counterraptor/cg_resilience.json"))
    alpha = 0.5
    sample_g = 0.1

    total_cost = 0
    for fp, bw in fp_to_bw.items():
        total_cost += relays.get_cost(bw)

    thresh = threshold / total_cost

    ratios = dict.fromkeys(fp_to_bw, 0)
    excess = 1

    curr_fps = list(fp_to_bw.keys())
    cnt = 1
    while excess > 0:
        print(f'----- Round {cnt} -----')
        cnt += 1

        if len(curr_fps) == 0:
            break

        curr_fp_to_bw = {fp: fp_to_bw[fp] for fp in curr_fps}
        curr_fp_to_as = {fp: fp_to_as[fp] for fp in curr_fps}
        curr_distr = counterraptor.compute_cr_selection_probs(
            client_as, curr_fp_to_bw, curr_fp_to_as, client_to_all_res,
            client_to_guard_res, alpha, sample_g * len(curr_fp_to_bw))
        print(f'sum distr (~1): {sum(curr_distr.values())}')

        norm = excess
        print(f'norm: {norm}')

        num_over = 0
        excess = 0
        for fp in list(curr_fps):
            cost = relays.get_cost(fp_to_bw[fp])
            ratio = curr_distr[fp] / cost * norm
            ratios[fp] += ratio

            if ratios[fp] > thresh:
                excess += ((ratios[fp] - thresh) * cost)
                ratios[fp] = thresh
                curr_fps.remove(fp)

                num_over += 1

        print(f'num over thresh: {num_over}')

    redistr = {}
    for fp, val in ratios.items():
        prob = val * relays.get_cost(fp_to_bw[fp])
        redistr[fp] = prob

    return redistr
コード例 #14
0
import counterraptor as cr
import vanilla
import json
import pickle
import relays

# ------- init info ------------------

client_to_all_res = json.load(open("all_reachable_resilience.json"))
client_to_guard_res = json.load(open("cg_resilience.json"))
client_as_lst = list(client_to_guard_res.keys())

ip_to_as = json.load(open("../guard_info/ip_to_as.json"))
guard_to_bw = pickle.load(open("../guard_info/guard_to_bw.pickle", "rb"))
guard_to_cost = {
    guard: relays.get_cost(bw)
    for guard, bw in guard_to_bw.items()
}

alpha = 0.5
sample_size = int(0.1 * len(guard_to_bw))  # g = 0.1

# ------------------------------------


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--target_as")
    return parser.parse_args()