def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,
                                     node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(
            rospack.get_path('augmented_reality_apriltag') +
            '/src/models/duckie.obj')

        # Load calibration files
        self._res_w = 640
        self._res_h = 480
        self.calibration_call()

        # Initialize classes
        self.at_detec = Detector()
        self.helper = Helpers(self.current_camera_info)
        self.bridge = CvBridge()

        # Subscribe to the compressed camera image
        self.cam_image = rospy.Subscriber(
            f'/{self.veh}/camera_node/image/compressed',
            CompressedImage,
            self.callback,
            queue_size=10)

        # Publishers
        self.aug_image = rospy.Publisher(
            f'/{self.veh}/{node_name}/image/compressed',
            CompressedImage,
            queue_size=10)
コード例 #2
0
    def __init__(self, node_name):
        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name, node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(rospack.get_path('augmented_reality_apriltag') + '/src/models/duckie.obj')

        self.bridge = CvBridge()

        self.at_detector = Detector(searchpath=['apriltags'], families='tag36h11', nthreads=1, quad_decimate=1.0,
                                    quad_sigma=0.0, refine_edges=1, decode_sharpening=0.25, debug=0)

        # subscribe to camera stream
        self.sub_camera_img = rospy.Subscriber("camera_node/image/compressed", CompressedImage, self.callback,
                                               queue_size=1)
        # publish modified image
        self.pub_modified_img = rospy.Publisher(f"~image/compressed", CompressedImage,
                                                queue_size=1)

        calibration_data = self.read_yaml_file(f"/data/config/calibrations/camera_intrinsic/{self.veh}.yaml")
        self.K = np.array(calibration_data["camera_matrix"]["data"]).reshape(3, 3)

        self.log("Letsgoooooo")
コード例 #3
0
    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,
                                     node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(
            rospack.get_path('augmented_reality_apriltag') +
            '/src/models/duckie.obj')

        self.at_detector = Detector(families='tag36h11',
                                    nthreads=5,
                                    quad_decimate=2.0,
                                    quad_sigma=0.0,
                                    refine_edges=1,
                                    decode_sharpening=0.25,
                                    debug=0)

        self.bridge = CvBridge()

        self.pub_tagimg = rospy.Publisher('at_detect/image/compressed',
                                          CompressedImage,
                                          queue_size=1)
        self.sub_img = rospy.Subscriber('camera_node/image/compressed',
                                        CompressedImage, self.cb_at_detect)
    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,
                                     node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()

        # Initialize an instance of Renderer giving the model in input.
        rospy.loginfo("[ARNode]: Initializing Renderer ...")
        self.renderer = Renderer(
            rospack.get_path('augmented_reality_apriltag') +
            '/src/models/duckie.obj')

        # April Tag Detector
        rospy.loginfo("[ARNode]: Initializing Detector ...")
        self.at_detector = Detector(searchpath=['apriltags'],
                                    families='tag36h11',
                                    nthreads=1,
                                    quad_decimate=1.0,
                                    quad_sigma=0.0,
                                    refine_edges=1,
                                    decode_sharpening=0.25,
                                    debug=0)

        # CV Bridge
        rospy.loginfo("[ARNode]: Initializing CV Bridge ...")
        self.bridge = CvBridge()

        # Intrinsics
        rospy.loginfo("[ARNode]: Loading Camera Intrinsics ...")
        if (not os.path.isfile(
                f'/data/config/calibrations/camera_intrinsic/{self.veh}.yaml')
            ):
            rospy.logwarn(
                f'[AugmentedRealityBasics]: Could not find {self.veh}.yaml. Loading default.yaml'
            )
            camera_intrinsic = self.readYamlFile(
                f'/data/config/calibrations/camera_intrinsic/default.yaml')
        else:
            camera_intrinsic = self.readYamlFile(
                f'/data/config/calibrations/camera_intrinsic/{self.veh}.yaml')
        self.K = np.array(camera_intrinsic['camera_matrix']['data']).reshape(
            3, 3)

        # Subscribers
        rospy.loginfo("[ARNode]: Initializing Subscribers ...")
        self.image_subscriber = rospy.Subscriber(
            'camera_node/image/compressed', CompressedImage, self.callback)

        # Publishers
        rospy.loginfo("[ARNode]: Initializing Publishers ...")
        self.mod_img_pub = rospy.Publisher('ar_node/image/compressed',
                                           CompressedImage,
                                           queue_size=1)
コード例 #5
0
    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,
                                     node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(
            rospack.get_path('augmented_reality_apriltag') +
            '/src/models/duckie.obj')

        # bridge between opencv and ros
        self.bridge = CvBridge()

        # construct subscriber for images
        self.camera_sub = rospy.Subscriber('camera_node/image/compressed',
                                           CompressedImage, self.callback)
        # construct publisher for AR images
        self.pub = rospy.Publisher('~augemented_image/compressed',
                                   CompressedImage,
                                   queue_size=10)

        # april-tag detector
        self.at_detector = Detector(searchpath=['apriltags'],
                                    families='tag36h11',
                                    nthreads=4,
                                    quad_decimate=2.0,
                                    quad_sigma=0.0,
                                    refine_edges=1,
                                    decode_sharpening=0.25,
                                    debug=0)

        # get camera calibration parameters (homography, camera matrix, distortion parameters)
        self.intrinsics_file = '/data/config/calibrations/camera_intrinsic/' + \
            rospy.get_namespace().strip("/") + ".yaml"
        rospy.loginfo('Reading camera intrinsics from {}'.format(
            self.intrinsics_file))
        intrinsics = self.readYamlFile(self.intrinsics_file)

        self.h = intrinsics['image_height']
        self.w = intrinsics['image_width']
        self.camera_mat = np.array(
            intrinsics['camera_matrix']['data']).reshape(3, 3)

        # Precompute some matricies
        self.camera_params = (self.camera_mat[0, 0], self.camera_mat[1, 1],
                              self.camera_mat[0, 2], self.camera_mat[1, 2])
        self.inv_camera_mat = np.linalg.inv(self.camera_mat)
        self.mat_3Dto2D = np.concatenate((np.identity(3), np.zeros((3, 1))),
                                         axis=1)
        self.T = np.zeros((4, 4))
        self.T[-1, -1] = 1.0
コード例 #6
0
    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(rospack.get_path('augmented_reality_apriltag') + '/src/models/duckie.obj')
        self.bridge = CvBridge()
        #
        #   Write your code here
        #
        self.homography = self.load_extrinsics()
        self.H = np.array(self.homography).reshape((3, 3))
        self.Hinv = np.linalg.inv(self.H)
        self.at_detector = Detector(searchpath=['apriltags'],
                       families='tag36h11',
                       nthreads=1,
                       quad_decimate=1.0,
                       quad_sigma=0.0,
                       refine_edges=1,
                       decode_sharpening=0.25,
                       debug=0)

        self.sub_compressed_img = rospy.Subscriber(
            "/robot_name/camera_node/image/compressed",
            CompressedImage,
            self.callback,
            queue_size=1
        )

        self.sub_camera_info = rospy.Subscriber(
            "/robot_name/camera_node/camera_info",
            CameraInfo,
            self.cb_camera_info,
            queue_size=1
        )

        self.pub_map_img = rospy.Publisher(
            "~april_tag_duckie/image/compressed",
            CompressedImage,
            queue_size=1,
            dt_topic_type=TopicType.VISUALIZATION,
        )
コード例 #7
0
    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(rospack.get_path('augmented_reality_apriltag') + '/src/models/duckie.obj')
    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(rospack.get_path('augmented_reality_apriltag') + '/src/models/duckie.obj')

        #
        #   Write your code here
        #
        self.bridge = CvBridge()
        self.image = None
        self.image_height = None
        self.image_width = None
        self.cam_info = None
        self.camera_info_received = False
        self.at_detector = Detector(families='tag36h11',
                               nthreads=1,
                               quad_decimate=1.0,
                               quad_sigma=0.0,
                               refine_edges=1,
                               decode_sharpening=0.25,
                               debug=0)

        self.sub_image_comp = rospy.Subscriber(
            f'/{self.veh}/camera_node/image/compressed',
            CompressedImage,
            self.image_cb,
            buff_size=10000000,
            queue_size=1
        )

        self.sub_cam_info = rospy.Subscriber(f'/{self.veh}/camera_node/camera_info', CameraInfo,
                                             self.cb_camera_info, queue_size=1)

        self.pub_aug_image = rospy.Publisher(f'/{self.veh}/{node_name}/image/compressed',
                                             CompressedImage, queue_size=10)
コード例 #9
0
    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,
                                     node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        # Load calibration files
        self.calib_data = self.readYamlFile(
            '/data/config/calibrations/camera_intrinsic/' + self.veh + '.yaml')
        self.log('Loaded intrinsics calibration file')
        self.extrinsics = self.readYamlFile(
            '/data/config/calibrations/camera_extrinsic/' + self.veh + '.yaml')
        self.log('Loaded extrinsics calibration file')

        # Retrieve intrinsic info
        self.cam_info = self.setCamInfo(self.calib_data)

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(
            rospack.get_path('augmented_reality_apriltag') +
            '/src/models/duckie.obj')
        self.log('Renderer object created')
        # Create AprilTag detector object
        self.at_detector = Detector()

        # Create cv_bridge
        self.bridge = CvBridge()

        # Define subscriber to recieve images
        self.image_sub = rospy.Subscriber(
            '/' + self.veh + '/camera_node/image/compressed', CompressedImage,
            self.callback)
        # Publish the rendered image to a new topic
        self.augmented_pub = rospy.Publisher('~image/compressed',
                                             CompressedImage,
                                             queue_size=1)

        self.log(node_name + ' initialized and running')
コード例 #10
0
class ARNode(DTROS):
    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,
                                     node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(
            rospack.get_path('augmented_reality_apriltag') +
            '/src/models/duckie.obj')

        # bridge between opencv and ros
        self.bridge = CvBridge()

        # construct subscriber for images
        self.camera_sub = rospy.Subscriber('camera_node/image/compressed',
                                           CompressedImage, self.callback)
        # construct publisher for AR images
        self.pub = rospy.Publisher('~augemented_image/compressed',
                                   CompressedImage,
                                   queue_size=10)

        # april-tag detector
        self.at_detector = Detector(searchpath=['apriltags'],
                                    families='tag36h11',
                                    nthreads=4,
                                    quad_decimate=2.0,
                                    quad_sigma=0.0,
                                    refine_edges=1,
                                    decode_sharpening=0.25,
                                    debug=0)

        # get camera calibration parameters (homography, camera matrix, distortion parameters)
        self.intrinsics_file = '/data/config/calibrations/camera_intrinsic/' + \
            rospy.get_namespace().strip("/") + ".yaml"
        rospy.loginfo('Reading camera intrinsics from {}'.format(
            self.intrinsics_file))
        intrinsics = self.readYamlFile(self.intrinsics_file)

        self.h = intrinsics['image_height']
        self.w = intrinsics['image_width']
        self.camera_mat = np.array(
            intrinsics['camera_matrix']['data']).reshape(3, 3)

        # Precompute some matricies
        self.camera_params = (self.camera_mat[0, 0], self.camera_mat[1, 1],
                              self.camera_mat[0, 2], self.camera_mat[1, 2])
        self.inv_camera_mat = np.linalg.inv(self.camera_mat)
        self.mat_3Dto2D = np.concatenate((np.identity(3), np.zeros((3, 1))),
                                         axis=1)
        self.T = np.zeros((4, 4))
        self.T[-1, -1] = 1.0

    def callback(self, data):
        img = self.readImage(data)
        tags = self.at_detector.detect(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY),
                                       estimate_tag_pose=True,
                                       camera_params=self.camera_params,
                                       tag_size=TAG_SIZE)

        for tag in tags:
            H_tag2img = tag.homography
            projection_mat = self.projection_matrix(H_tag2img)
            self.renderer.render(img, projection_mat)

        msg = self.bridge.cv2_to_compressed_imgmsg(img, dst_format='jpeg')
        self.pub.publish(msg)

    def projection_matrix(self, homography):
        """
            Write here the compuatation for the projection matrix, namely the matrix
            that maps the camera reference frame to the AprilTag reference frame.
        """
        T_plane = self.inv_camera_mat @ homography
        T_plane = T_plane / np.linalg.norm(
            T_plane[:, 0]
        )  # estimate scale using rotation matrix basis constraint

        r1 = T_plane[:, 0]
        r2 = T_plane[:, 1]
        t = T_plane[:, 2]

        # Make sure r1 and r2 form an orthogonal basis then generate r3
        r2 = (r2 - np.dot(r2, r1) * r1)
        r2 = r2 / np.linalg.norm(r2)
        r3 = np.cross(r1, r2)

        self.T[:3, :] = np.column_stack((r1, r2, r3, t))

        return self.camera_mat @ self.mat_3Dto2D @ self.T

    def readImage(self, msg_image):
        """
            Convert images to OpenCV images
            Args:
                msg_image (:obj:`CompressedImage`) the image from the camera node
            Returns:
                OpenCV image
        """
        try:
            cv_image = self.bridge.compressed_imgmsg_to_cv2(msg_image)
            return cv_image
        except CvBridgeError as e:
            self.log(e)
            return []

    def readYamlFile(self, fname):
        """
            Reads the 'fname' yaml file and returns a dictionary with its input.

            You will find the calibration files you need in:
            `/data/config/calibrations/`
        """
        with open(fname, 'r') as in_file:
            try:
                yaml_dict = yaml.load(in_file)
                return yaml_dict
            except yaml.YAMLError as exc:
                self.log("YAML syntax error. File: %s fname. Exc: %s" %
                         (fname, exc),
                         type='fatal')
                rospy.signal_shutdown()
                return

    def onShutdown(self):
        super(ARNode, self).onShutdown()
class ARNode(DTROS):

    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(rospack.get_path('augmented_reality_apriltag') + '/src/models/duckie.obj')

        #
        #   Write your code here
        #
        self.bridge = CvBridge()
        self.image = None
        self.image_height = None
        self.image_width = None
        self.cam_info = None
        self.camera_info_received = False
        self.at_detector = Detector(families='tag36h11',
                               nthreads=1,
                               quad_decimate=1.0,
                               quad_sigma=0.0,
                               refine_edges=1,
                               decode_sharpening=0.25,
                               debug=0)

        self.sub_image_comp = rospy.Subscriber(
            f'/{self.veh}/camera_node/image/compressed',
            CompressedImage,
            self.image_cb,
            buff_size=10000000,
            queue_size=1
        )

        self.sub_cam_info = rospy.Subscriber(f'/{self.veh}/camera_node/camera_info', CameraInfo,
                                             self.cb_camera_info, queue_size=1)

        self.pub_aug_image = rospy.Publisher(f'/{self.veh}/{node_name}/image/compressed',
                                             CompressedImage, queue_size=10)

    def image_cb(self, image_msg):
        try:
            image = self.readImage(image_msg)
        except ValueError as e:
            self.logerr('Could not decode image: %s' % e)
            return

        self.image = image
        self.image_height = np.shape(image)[0]
        self.image_width = np.shape(image)[1]

    def cb_camera_info(self, msg):
        if not self.camera_info_received:
            self.cam_info = msg

        self.camera_info_received = True

    def detect_april_tag(self):
        K = np.array(self.cam_info.K).reshape((3, 3))
        camera_params = (K[0, 0], K[1, 1], K[0, 2], K[1, 2])
        img_grey = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
        tags = self.at_detector.detect(img_grey, True, camera_params, 0.065)
        list_hom_tag = []
        for tag in tags:
            list_hom_tag.append(tag.homography)

        return list_hom_tag


    def projection_matrix(self, intrinsic, homography):
        """
            Write here the compuatation for the projection matrix, namely the matrix
            that maps the camera reference frame to the AprilTag reference frame.
        """
        K = intrinsic
        P_ext = np.linalg.inv(K) @ homography
        r_1 = P_ext[:, 0]
        r_1_norm = np.linalg.norm(r_1)
        r_1 = r_1 / r_1_norm
        r_2 = P_ext[:, 1]
        r_2_norm = np.linalg.norm(r_2)
        r_2 = r_2 / r_2_norm
        r_3 = np.cross(r_1, r_2)
        t_norm = (r_1_norm + r_2_norm)/2
        t = P_ext[:, 2] / t_norm
        P_ext_new = np.concatenate((r_1, r_2, r_3, t)).reshape((-1, 4), order='F')
        P = K @ P_ext_new

        return P

    def readImage(self, msg_image):
        """
            Convert images to OpenCV images
            Args:
                msg_image (:obj:`CompressedImage`) the image from the camera node
            Returns:
                OpenCV image
        """
        try:
            cv_image = self.bridge.compressed_imgmsg_to_cv2(msg_image)
            return cv_image
        except CvBridgeError as e:
            self.log(e)
            return []

    def readYamlFile(self,fname):
        """
            Reads the 'fname' yaml file and returns a dictionary with its input.

            You will find the calibration files you need in:
            `/data/config/calibrations/`
        """
        with open(fname, 'r') as in_file:
            try:
                yaml_dict = yaml.load(in_file)
                return yaml_dict
            except yaml.YAMLError as exc:
                self.log("YAML syntax error. File: %s fname. Exc: %s"
                         %(fname, exc), type='fatal')
                rospy.signal_shutdown()
                return


    def onShutdown(self):
        super(ARNode, self).onShutdown()

    def run(self):
        while not rospy.is_shutdown():
            if self.image is None:
                continue
            if not self.camera_info_received:
                continue

            list_hom_tag = self.detect_april_tag()
            if not list_hom_tag:
                continue
            img_rend = self.image
            for h in list_hom_tag:
                proj_mat = self.projection_matrix(np.array(self.cam_info.K).reshape((3, 3)), h)
                img_rend = self.renderer.render(img_rend, proj_mat)

            comp_image = self.bridge.cv2_to_compressed_imgmsg(img_rend)
            self.pub_aug_image.publish(comp_image)
コード例 #12
0
class ARNode(DTROS):
    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,
                                     node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        # Load calibration files
        self.calib_data = self.readYamlFile(
            '/data/config/calibrations/camera_intrinsic/' + self.veh + '.yaml')
        self.log('Loaded intrinsics calibration file')
        self.extrinsics = self.readYamlFile(
            '/data/config/calibrations/camera_extrinsic/' + self.veh + '.yaml')
        self.log('Loaded extrinsics calibration file')

        # Retrieve intrinsic info
        self.cam_info = self.setCamInfo(self.calib_data)

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(
            rospack.get_path('augmented_reality_apriltag') +
            '/src/models/duckie.obj')
        self.log('Renderer object created')
        # Create AprilTag detector object
        self.at_detector = Detector()

        # Create cv_bridge
        self.bridge = CvBridge()

        # Define subscriber to recieve images
        self.image_sub = rospy.Subscriber(
            '/' + self.veh + '/camera_node/image/compressed', CompressedImage,
            self.callback)
        # Publish the rendered image to a new topic
        self.augmented_pub = rospy.Publisher('~image/compressed',
                                             CompressedImage,
                                             queue_size=1)

        self.log(node_name + ' initialized and running')

    def callback(self, ros_image):
        '''
            MAIN TASK
            Converse the image from the camera_node to a cv2 image. Then, detects 
            the apriltags position and retrieves the homography. With the homography
            and the intrinsic camera matrix, it computes the projection matrix. Finally,
            the provided Renderer class returns an image with the model rendered on it,
            which is then published to a new topic
        '''
        # Convert to cv2 image
        image = self.readImage(ros_image)
        gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # Extract camera parameters
        K = np.array(self.cam_info.K).reshape((3, 3))
        cam_params = (K[0, 0], K[1, 1], K[0, 2], K[1, 2])

        # Detect apriltags
        detections = self.at_detector.detect(gray_image,
                                             estimate_tag_pose=True,
                                             camera_params=cam_params,
                                             tag_size=0.065)

        # Render a model in each of the detected Apriltags
        rendered_image = image
        for tag in detections:
            # Extract homography
            H = np.array(tag.homography).reshape((3, 3))

            # Obtain Projection matrix
            projection_matrix = self.projection_matrix(K, H)

            # Render the model
            rendered_image = self.renderer.render(rendered_image,
                                                  projection_matrix)

        # Publish image with models rendered
        augmented_image = self.bridge.cv2_to_compressed_imgmsg(rendered_image)
        self.augmented_pub.publish(augmented_image)

    def setCamInfo(self, calib_data):
        '''
            Introduces the camera information from the dictionary
            obtained reading the yaml file to a CameraInfo object
        '''
        cam_info = CameraInfo()
        cam_info.width = calib_data['image_width']
        cam_info.height = calib_data['image_height']
        cam_info.K = calib_data['camera_matrix']['data']
        cam_info.D = calib_data['distortion_coefficients']['data']
        cam_info.R = calib_data['rectification_matrix']['data']
        cam_info.P = calib_data['projection_matrix']['data']
        cam_info.distortion_model = calib_data['distortion_model']
        return cam_info

    def projection_matrix(self, intrinsic, homography):
        """
            Method that computes a Projection matrix from 3D world to image plane.
            Args:
                intrinsic: (np.array) Camera matrix
                homography: (np.array) 2D Homography obtained by detecting the apriltag position
            Returns:
                P: Projeciton matrix

        """
        # Extract parameters
        K = intrinsic
        K_inv = np.linalg.inv(K)
        H = homography

        # Compute 2D Rt matrix
        Rt = K_inv @ H
        # Normalize so that ||R1|| = 1
        Rt = Rt / np.linalg.norm(Rt[:, 0])
        t = np.array(Rt[:, 2]).reshape((3, 1))
        # Extract rotation vectors
        R1 = np.array(Rt[:, 0]).reshape((3, 1))
        R2 = np.array(Rt[:, 1]).reshape((3, 1))
        # Compute third rotation vector to be orthogonal to the other two
        R3 = np.array(np.cross(Rt[:, 0], Rt[:, 1])).reshape((3, 1))
        # Construct 3D rotation matrix
        R = np.concatenate((R1, R2, R3), axis=1)
        # Perform polar decomposition to enforce orthogonality
        U, S, Vt = np.linalg.svd(R)
        R = U @ Vt
        # Compute projection matrix
        P = K @ (np.concatenate((R, t), axis=1))

        return P

    def readImage(self, msg_image):
        """
            Convert images to OpenCV images
            Args:
                msg_image (:obj:`CompressedImage`) the image from the camera node
            Returns:
                OpenCV image
        """
        try:
            cv_image = self.bridge.compressed_imgmsg_to_cv2(msg_image)
            return cv_image
        except CvBridgeError as e:
            self.log(e)
            return []

    def readYamlFile(self, fname):
        """
            Reads the 'fname' yaml file and returns a dictionary with its input.

            You will find the calibration files you need in:
            `/data/config/calibrations/`
        """
        with open(fname, 'r') as in_file:
            try:
                yaml_dict = yaml.load(in_file)
                return yaml_dict
            except yaml.YAMLError as exc:
                self.log("YAML syntax error. File: %s fname. Exc: %s" %
                         (fname, exc),
                         type='fatal')
                rospy.signal_shutdown()
                return

    def onShutdown(self):
        super(ARNode, self).onShutdown()
コード例 #13
0
class ARNode(DTROS):
    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,
                                     node_type=NodeType.GENERIC)
        self.veh_name = rospy.get_namespace().strip("/")
        self.node_name = rospy.get_name().strip("/")

        # initialize renderer
        rospack = rospkg.RosPack()
        self.renderer = Renderer(
            rospack.get_path('augmented_reality_apriltag') +
            '/src/models/duckie.obj')

        # initialize apriltag detector

        self.at_detector = Detector(
            families='tag36h11',
            nthreads=1,
            quad_decimate=1.0,
            quad_sigma=0.0,
            refine_edges=1,
            decode_sharpening=0.25,
            debug=0,
            #searchpath=[]
        )
        self.at_camera_params = None
        # self.at_tag_size = 0.065 # fixed param
        self.at_tag_size = 2  # to scale pose matrix to homography
        # initialize member variables
        self.bridge = CvBridge()
        self.camera_info_received = False
        self.camera_info = None
        self.camera_P = None
        self.camera_K = None
        self.cv2_img = None

        # initialize subs and pubs
        self.sub_compressed_img = Subscriber(
            "/{}/camera_node/image/compressed".format(self.veh_name),
            CompressedImage,
            self.cb_image,
            queue_size=1)
        self.loginfo("Subcribing to topic {}".format(
            "/{}/camera_node/image/compressed".format(self.veh_name)))

        self.sub_camera_info = Subscriber("/{}/camera_node/camera_info".format(
            self.veh_name),
                                          CameraInfo,
                                          self.cb_camera_info,
                                          queue_size=1)
        self.loginfo("Subcribing to topic {}".format(
            "/{}/camera_node/camera_info".format(self.veh_name)))

        self.pub_aug_img = Publisher(
            "/{}/{}/augmented_image/compressed".format(self.veh_name,
                                                       self.node_name),
            CompressedImage,
            queue_size=1)
        self.loginfo("Publishing to topic {}".format(
            "/{}/{}/augmented_image/compressed".format(self.veh_name,
                                                       self.node_name)))

    def cb_image(self, msg):
        # cv2_img = self.bridge.compressed_imgmsg_to_cv2(msg)

        self.img_msg = msg

        return

    def aug_image_and_pub(self, msg):

        cv2_img = self.bridge.compressed_imgmsg_to_cv2(msg)
        # TODO: 1. Detect the AprilTag and extract its reference frame
        greyscale_img = cv2.cvtColor(cv2_img, cv2.COLOR_BGR2GRAY)

        tags = self.at_detector.detect(greyscale_img, True,
                                       self.at_camera_params, self.at_tag_size)

        # TODO: 2. Estimate the homography matrix
        # Read function estimate_pose_for_tag_homography in https://github.com/AprilRobotics/apriltag/blob/master/apriltag_pose.c
        # The pose_R and pose_t have been already computed
        pass

        # TODO 3. Derive the transformation from the reference frame of the AprilTag to the target image reference frame
        # project from X_T in frame T to pixel: P_camera @ [R|t] @ X_T
        # return P_T = P_camera @ [R|t]
        def compose_P_from_tag(P_camera, tag):

            T = np.concatenate((np.concatenate(
                (tag.pose_R, tag.pose_t), axis=1), np.array([[0, 0, 0, 1.0]])),
                               axis=0)
            self.logdebug("P_camera is \n {}".format(P_camera))

            P = P_camera @ T
            self.logdebug("P is \n {}".format(P))
            # norm_P = P/P[2,2]
            # self.logdebug("norm_P is \n {}".format(norm_P))
            return P

        # TODO 4. Project our 3D model in the image (pixel space) and draw it
        aug_img = cv2_img
        for tag in tags:
            aug_img = self.renderer.render(
                aug_img, compose_P_from_tag(self.camera_P, tag))

        aug_image_msg = self.bridge.cv2_to_compressed_imgmsg(aug_img)
        aug_image_msg.header = msg.header
        self.pub_aug_img.publish(aug_image_msg)

    def cb_camera_info(self, msg):

        # self.logdebug("camera info received! ")
        if not self.camera_info_received:
            self.camera_info = msg
            # TODO: decide whether to use K or P for projection
            self.camera_P = np.array(msg.P).reshape((3, 4))
            self.camera_K = np.array(msg.K).reshape((3, 3))
            self.at_camera_params = (self.camera_P[0, 0], self.camera_P[1, 1],
                                     self.camera_P[0, 2], self.camera_P[1, 2])

        self.camera_info_received = True

        return

    # def projection_matrix(self, intrinsic, homography):
    #     """
    #         Write here the compuatation for the projection matrix, namely the matrix
    #         that maps the camera reference frame to the AprilTag reference frame.
    #     """
    #
    #     # TODO:
    #     # Write your code here
    #     #
    #     pass
    def readYamlFile(self, fname):
        """
            Reads the 'fname' yaml file and returns a dictionary with its input.

            You will find the calibration files you need in:
            `/data/config/calibrations/`
        """
        with open(fname, 'r') as in_file:
            try:
                yaml_dict = yaml.load(in_file)
                return yaml_dict
            except yaml.YAMLError as exc:
                self.log("YAML syntax error. File: %s fname. Exc: %s" %
                         (fname, exc),
                         type='fatal')
                rospy.signal_shutdown()
                return

    def run(self):
        rate = rospy.Rate(10)
        while not rospy.is_shutdown():
            if self.camera_info_received:
                img_msg = deepcopy(self.img_msg)
                self.aug_image_and_pub(img_msg)
                # self.logdebug("published one augmented image...")
            else:
                self.logwarn("Image received, by initialization not finished")
            rate.sleep()

    def onShutdown(self):
        super(ARNode, self).onShutdown()
コード例 #14
0
    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,
                                     node_type=NodeType.GENERIC)
        self.veh_name = rospy.get_namespace().strip("/")
        self.node_name = rospy.get_name().strip("/")

        # initialize renderer
        rospack = rospkg.RosPack()
        self.renderer = Renderer(
            rospack.get_path('augmented_reality_apriltag') +
            '/src/models/duckie.obj')

        # initialize apriltag detector

        self.at_detector = Detector(
            families='tag36h11',
            nthreads=1,
            quad_decimate=1.0,
            quad_sigma=0.0,
            refine_edges=1,
            decode_sharpening=0.25,
            debug=0,
            #searchpath=[]
        )
        self.at_camera_params = None
        # self.at_tag_size = 0.065 # fixed param
        self.at_tag_size = 2  # to scale pose matrix to homography
        # initialize member variables
        self.bridge = CvBridge()
        self.camera_info_received = False
        self.camera_info = None
        self.camera_P = None
        self.camera_K = None
        self.cv2_img = None

        # initialize subs and pubs
        self.sub_compressed_img = Subscriber(
            "/{}/camera_node/image/compressed".format(self.veh_name),
            CompressedImage,
            self.cb_image,
            queue_size=1)
        self.loginfo("Subcribing to topic {}".format(
            "/{}/camera_node/image/compressed".format(self.veh_name)))

        self.sub_camera_info = Subscriber("/{}/camera_node/camera_info".format(
            self.veh_name),
                                          CameraInfo,
                                          self.cb_camera_info,
                                          queue_size=1)
        self.loginfo("Subcribing to topic {}".format(
            "/{}/camera_node/camera_info".format(self.veh_name)))

        self.pub_aug_img = Publisher(
            "/{}/{}/augmented_image/compressed".format(self.veh_name,
                                                       self.node_name),
            CompressedImage,
            queue_size=1)
        self.loginfo("Publishing to topic {}".format(
            "/{}/{}/augmented_image/compressed".format(self.veh_name,
                                                       self.node_name)))
class ARNode(DTROS):
    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,
                                     node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()

        # Initialize an instance of Renderer giving the model in input.
        rospy.loginfo("[ARNode]: Initializing Renderer ...")
        self.renderer = Renderer(
            rospack.get_path('augmented_reality_apriltag') +
            '/src/models/duckie.obj')

        # April Tag Detector
        rospy.loginfo("[ARNode]: Initializing Detector ...")
        self.at_detector = Detector(searchpath=['apriltags'],
                                    families='tag36h11',
                                    nthreads=1,
                                    quad_decimate=1.0,
                                    quad_sigma=0.0,
                                    refine_edges=1,
                                    decode_sharpening=0.25,
                                    debug=0)

        # CV Bridge
        rospy.loginfo("[ARNode]: Initializing CV Bridge ...")
        self.bridge = CvBridge()

        # Intrinsics
        rospy.loginfo("[ARNode]: Loading Camera Intrinsics ...")
        if (not os.path.isfile(
                f'/data/config/calibrations/camera_intrinsic/{self.veh}.yaml')
            ):
            rospy.logwarn(
                f'[AugmentedRealityBasics]: Could not find {self.veh}.yaml. Loading default.yaml'
            )
            camera_intrinsic = self.readYamlFile(
                f'/data/config/calibrations/camera_intrinsic/default.yaml')
        else:
            camera_intrinsic = self.readYamlFile(
                f'/data/config/calibrations/camera_intrinsic/{self.veh}.yaml')
        self.K = np.array(camera_intrinsic['camera_matrix']['data']).reshape(
            3, 3)

        # Subscribers
        rospy.loginfo("[ARNode]: Initializing Subscribers ...")
        self.image_subscriber = rospy.Subscriber(
            'camera_node/image/compressed', CompressedImage, self.callback)

        # Publishers
        rospy.loginfo("[ARNode]: Initializing Publishers ...")
        self.mod_img_pub = rospy.Publisher('ar_node/image/compressed',
                                           CompressedImage,
                                           queue_size=1)

    @staticmethod
    def projection_matrix(intrinsic, homography):
        """
            Write here the compuatation for the projection matrix, namely the matrix
            that maps the camera reference frame to the AprilTag reference frame.
        """

        P_list = []

        for H in homography:

            R2D_t = np.linalg.inv(intrinsic).dot(H)  # [R2D_t] = [r1, r2, t]
            R2D_t = R2D_t / np.linalg.norm(R2D_t[:, 0])  #normalize
            r1 = R2D_t[:, 0]
            r2 = R2D_t[:, 1]
            t = R2D_t[:, 2]

            # r3 must be orthogonal to r1 and r2
            r3 = np.cross(r1, r2)

            R3D = np.column_stack((r1, r2, r3))

            # since R3D is not a proper rotation matrix yet, we have to orthonormalize it with a polar decomposition: A = RP =
            W, U, Vt = cv2.SVDecomp(R3D)
            R3D = U.dot(Vt)

            R3D_t = np.column_stack((R3D, t))  # R3D_t = [r1, r2, r3, t]

            P = intrinsic.dot(R3D_t)

            P_list.append(P)

        return P_list

    def callback(self, imgmsg):

        # Convert img message to cv2
        img = self.readImage(imgmsg)

        # Convert to greyscale
        img_grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

        # Detect april tags
        tags = self.at_detector.detect(img_grey,
                                       estimate_tag_pose=False,
                                       camera_params=None,
                                       tag_size=None)
        # self.visualize_at_detection(img, tags) #debug visualization, marks april tags

        # Get homographies of april tags
        homography_list = [tag.homography for tag in tags]

        # Compute P from homographies
        P_list = self.projection_matrix(self.K, homography_list)

        # Render duckies on april tags
        for P in P_list:
            img = self.renderer.render(img, P)

        # Publish modified image
        modified_imgmsg = self.bridge.cv2_to_compressed_imgmsg(img)
        modified_imgmsg.header.stamp = rospy.Time.now()
        self.mod_img_pub.publish(modified_imgmsg)

        return

    def readImage(self, msg_image):
        """
            Convert images to OpenCV images
            Args:
                msg_image (:obj:`CompressedImage`) the image from the camera node
            Returns:
                OpenCV image
        """
        try:
            cv_image = self.bridge.compressed_imgmsg_to_cv2(msg_image)
            return cv_image
        except CvBridgeError as e:
            self.log(e)
            return []

    def readYamlFile(self, fname):
        """
            Reads the 'fname' yaml file and returns a dictionary with its input.

            You will find the calibration files you need in:
            `/data/config/calibrations/`
        """
        if (not os.path.isfile(fname)):
            rospy.logwarn("[ARNode]: Could not find file in %s" % fname)
            return

        with open(fname, 'r') as in_file:
            try:
                yaml_dict = yaml.load(in_file)
                return yaml_dict
            except yaml.YAMLError as exc:
                self.log("YAML syntax error. File: %s fname. Exc: %s" %
                         (fname, exc),
                         type='fatal')
                rospy.signal_shutdown()
                return

    @staticmethod
    def visualize_at_detection(img, tags):
        """
        Visualizes detected april tags for debugging.
        """
        for tag in tags:
            for index in range(len(tag.corners)):
                cv2.line(img, tuple(tag.corners[index - 1, :].astype(int)),
                         tuple(tag.corners[index, :].astype(int)), (0, 255, 0))

            cv2.putText(img,
                        str(tag.tag_id),
                        org=(tag.corners[0, 0].astype(int) + 10,
                             tag.corners[0, 1].astype(int) + 10),
                        fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                        fontScale=0.8,
                        color=(0, 0, 255))

    def on_shutdown(self):
        super(ARNode, self).on_shutdown()
コード例 #16
0
class ARNode(DTROS):

    def __init__(self, node_name):
        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name, node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(rospack.get_path('augmented_reality_apriltag') + '/src/models/duckie.obj')

        self.bridge = CvBridge()

        self.at_detector = Detector(searchpath=['apriltags'], families='tag36h11', nthreads=1, quad_decimate=1.0,
                                    quad_sigma=0.0, refine_edges=1, decode_sharpening=0.25, debug=0)

        # subscribe to camera stream
        self.sub_camera_img = rospy.Subscriber("camera_node/image/compressed", CompressedImage, self.callback,
                                               queue_size=1)
        # publish modified image
        self.pub_modified_img = rospy.Publisher(f"~image/compressed", CompressedImage,
                                                queue_size=1)

        calibration_data = self.read_yaml_file(f"/data/config/calibrations/camera_intrinsic/{self.veh}.yaml")
        self.K = np.array(calibration_data["camera_matrix"]["data"]).reshape(3, 3)

        self.log("Letsgoooooo")

    def callback(self, msg):
        """
        On camera callback, project the little duckies into the image on top of the april tags.
        """
        img = self.read_image(msg)  # convert to cv2 img

        # detect april tag and extract its reference frame
        grayscale_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        tags = self.at_detector.detect(grayscale_img, estimate_tag_pose=False, camera_params=None, tag_size=None)
        #  self.visualize_at_detection(img, tags)

        # determine H (using apriltag library)
        homography_list = [tag.homography for tag in tags]

        # derive P
        p_list = [self.projection_matrix(self.K, H) for H in homography_list]

        # project the model and draw it (using Renderer)
        for P in p_list:
            img = self.renderer.render(img, P)

        # publish modified image
        img_out = self.bridge.cv2_to_compressed_imgmsg(img)
        img_out.header = msg.header
        img_out.format = msg.format
        self.pub_modified_img.publish(img_out)

    @staticmethod
    def projection_matrix(K, H):
        """
        Find the projection matrix by expanding H.
        """
        R_2d = np.linalg.inv(K) @ H  # R_2d = [r1 r2 t]
        R_2d = R_2d / np.linalg.norm(R_2d[:, 0])
        r1 = R_2d[:, 0]
        r2 = R_2d[:, 1]
        t = R_2d[:, 2]
        r3 = np.cross(r1, r2)
        R = np.column_stack((r1, r2, r3))  # R = [r1 r2 r3]

        # make sure R is orthogonal
        W, U, Vt = cv2.SVDecomp(R)
        R = U @ Vt

        Rt = np.column_stack((R, t))  # Rt = [r1 r2 r3 t]
        P = K @ Rt
        return P

    def read_image(self, msg_image):
        """
            Convert images to OpenCV images
            Args:
                msg_image (:obj:`CompressedImage`) the image from the camera node
            Returns:
                OpenCV image
        """
        try:
            cv_image = self.bridge.compressed_imgmsg_to_cv2(msg_image)
            return cv_image
        except CvBridgeError as e:
            self.log(e)
            return []

    def read_yaml_file(self, fname):
        """
            Reads the 'fname' yaml file and returns a dictionary with its input.

            You will find the calibration files you need in:
            `/data/config/calibrations/`
        """
        with open(fname, 'r') as in_file:
            try:
                yaml_dict = yaml.load(in_file)
                return yaml_dict
            except yaml.YAMLError as exc:
                self.log("YAML syntax error. File: %s fname. Exc: %s"
                         %(fname, exc), type='fatal')
                rospy.signal_shutdown()
                return

    @staticmethod
    def visualize_at_detection(img, tags):
        """
        Visualize detected april tags for debugging.
        """
        for tag in tags:
            for idx in range(len(tag.corners)):
                cv2.line(img, tuple(tag.corners[idx - 1, :].astype(int)), tuple(tag.corners[idx, :].astype(int)),
                         (0, 255, 0))

            cv2.putText(img, str(tag.tag_id),
                        org=(tag.corners[0, 0].astype(int) + 10, tag.corners[0, 1].astype(int) + 10),
                        fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                        fontScale=0.8,
                        color=(0, 0, 255))

    def on_shutdown(self):
        super(ARNode, self).on_shutdown()
コード例 #17
0
class ARNode(DTROS):

    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(rospack.get_path('augmented_reality_apriltag') + '/src/models/duckie.obj')

        self.at_detector = Detector(families='tag36h11',
                       nthreads=5,
                       quad_decimate=2.0,
                       quad_sigma=0.0,
                       refine_edges=1,
                       decode_sharpening=0.25,
                       debug=0)
        
        self.bridge=CvBridge()
        
        self.pub_tagimg=rospy.Publisher('at_detect/image/compressed',CompressedImage, queue_size=1)
        self.sub_img = rospy.Subscriber('camera_node/image/compressed', CompressedImage, self.cb_at_detect)
    
    def cb_at_detect(self,msg):
        img=self.readImage(msg)
        img_gray=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        camerainfo=self.load_intrinsics()
        cameraMatrix = np.array(camerainfo.K).reshape((3,3))
        camera_params = (cameraMatrix[0,0],cameraMatrix[1,1],cameraMatrix[0,2],cameraMatrix[1,2])

        tags = self.at_detector.detect(img_gray, False, camera_params, 0.065)
        
        for tag in tags:
#            R=tag.pose_R
#            t=(tag.pose_t).reshape((3,))
#            extrinsic=np.eye(4)
#            extrinsic[0:3,0:3]=R
#            extrinsic[0:3,3]=t
#            aux=np.eye(3)
#            aux=np.c_[aux,[0,0,0]]
#            projection=np.linalg.multi_dot([cameraMatrix,aux,extrinsic])
#            rospy.loginfo(extrinsic)
            projection1=self.projection_matrix(cameraMatrix,tag.homography)
            #rospy.loginfo(projection1)
            img=self.renderer.render(img,projection1)
#            for idx in range(len(tag.corners)):                
#                cv2.line(img, tuple(tag.corners[idx-1, :].astype(int)), tuple(tag.corners[idx, :].astype(int)), (0, 255, 0))
        
        tag_msg=self.bridge.cv2_to_compressed_imgmsg(img)
        self.pub_tagimg.publish(tag_msg)
        
    def projection_matrix(self, camera_matrix, homography):
        """
            Write here the compuatation for the projection matrix, namely the matrix
            that maps the camera reference frame to the AprilTag reference frame.
        """
        # Compute rotation along the x and y axis as well as the translation
        #homography = homography * (-1)
        rot_and_transl = np.dot(np.linalg.inv(camera_matrix), homography)
        col_1 = rot_and_transl[:, 0]
        col_2 = rot_and_transl[:, 1]
        col_3 = rot_and_transl[:, 2]
        # normalise vectors
        l=np.linalg.norm(col_1, 2)
        rot_1 = col_1 / l
        rot_2 = col_2 / l
        translation = col_3 / l
        # compute the orthonormal basis
        rot_3 = np.cross(rot_1, rot_2)
        # finally, compute the 3D projection matrix from the model to the current frame
        projection = np.stack((rot_1, rot_2, rot_3, translation)).T
        #rospy.loginfo(projection)
        return np.dot(camera_matrix, projection)

        

    def readImage(self, msg_image):
        """
            Convert images to OpenCV images
            Args:
                msg_image (:obj:`CompressedImage`) the image from the camera node
            Returns:
                OpenCV image
        """
        try:
            cv_image = self.bridge.compressed_imgmsg_to_cv2(msg_image)
            return cv_image
        except CvBridgeError as e:
            self.log(e)
            return []

    def readYamlFile(self,fname):
        """
            Reads the 'fname' yaml file and returns a dictionary with its input.

            You will find the calibration files you need in:
            `/data/config/calibrations/`
        """
        with open(fname, 'r') as in_file:
            try:
                yaml_dict = yaml.load(in_file)
                return yaml_dict
            except yaml.YAMLError as exc:
                self.log("YAML syntax error. File: %s fname. Exc: %s"
                         %(fname, exc), type='fatal')
                rospy.signal_shutdown()
                return

    def load_intrinsics(self):
        # load intrinsic calibration
        cali_file_folder = '/data/config/calibrations/camera_intrinsic/'
        cali_file = cali_file_folder + rospy.get_namespace().strip("/") + ".yaml"
        calib_data=self.readYamlFile(cali_file)
        cam_info = CameraInfo()
        cam_info.width = calib_data['image_width']
        cam_info.height = calib_data['image_height']
        cam_info.K = calib_data['camera_matrix']['data']
        cam_info.D = calib_data['distortion_coefficients']['data']
        cam_info.R = calib_data['rectification_matrix']['data']
        cam_info.P = calib_data['projection_matrix']['data']
        cam_info.distortion_model = calib_data['distortion_model']
        return cam_info
        
    def onShutdown(self):
        super(ARNode, self).onShutdown()
class ARNode(DTROS):
    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,
                                     node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(
            rospack.get_path('augmented_reality_apriltag') +
            '/src/models/duckie.obj')

        # Load calibration files
        self._res_w = 640
        self._res_h = 480
        self.calibration_call()

        # Initialize classes
        self.at_detec = Detector()
        self.helper = Helpers(self.current_camera_info)
        self.bridge = CvBridge()

        # Subscribe to the compressed camera image
        self.cam_image = rospy.Subscriber(
            f'/{self.veh}/camera_node/image/compressed',
            CompressedImage,
            self.callback,
            queue_size=10)

        # Publishers
        self.aug_image = rospy.Publisher(
            f'/{self.veh}/{node_name}/image/compressed',
            CompressedImage,
            queue_size=10)

    def callback(self, image):
        """ 
            Callback method that ties everything together
        """
        # convert the image to cv2 format
        image = self.bridge.compressed_imgmsg_to_cv2(image)

        #undistort the image
        image = self.helper.process_image(image)

        # detect AprilTags
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        tags = self.at_detec.detect(gray,
                                    estimate_tag_pose=False,
                                    camera_params=None,
                                    tag_size=None)

        for tag in tags:
            # estimate homography
            homography = tag.homography

            # calculate projection matrix
            proj_mat = self.projection_matrix(self.current_camera_info.K,
                                              homography)

            # rendering magics
            image = self.renderer.render(image, proj_mat)

        #publish image to new topic
        self.aug_image.publish(self.bridge.cv2_to_compressed_imgmsg(image))

    def projection_matrix(self, intrinsic, homography):
        """
            Write here the compuatation for the projection matrix, namely the matrix
            that maps the camera reference frame to the AprilTag reference frame.
        """
        # format the K matrix
        K = np.reshape(np.array(intrinsic), (3, 3))

        # calculate R_t
        R_t = np.matmul(np.linalg.inv(K), homography)

        # normalization parameters R_t
        n_r1 = np.linalg.norm(R_t[:, 0])
        n_r2 = np.linalg.norm(R_t[:, 1])

        # calculate R_3 and rebuild R_t
        R = np.array([
            R_t[:, 0], R_t[:, 1],
            (n_r1 + n_r2) / 2 * np.cross(R_t[:, 0] / n_r1, R_t[:, 1] / n_r2)
        ])
        R_t = np.vstack((R, R_t[:, 2]))

        # calculate the projection matrix
        proj_mat = np.matmul(K, np.transpose(R_t))

        return proj_mat

    def readYamlFile(self, fname):
        """
            Reads the 'fname' yaml file and returns a dictionary with its input.

            You will find the calibration files you need in:
            `/data/config/calibrations/`
        """
        with open(fname, 'r') as in_file:
            try:
                yaml_dict = yaml.load(in_file)
                return yaml_dict
            except yaml.YAMLError as exc:
                self.log("YAML syntax error. File: %s fname. Exc: %s" %
                         (fname, exc),
                         type='fatal')
                rospy.signal_shutdown()
                return

    def calibration_call(self):
        # copied from the camera driver (dt-duckiebot-interface)

        # For intrinsic calibration
        self.cali_file_folder = '/data/config/calibrations/camera_intrinsic/'
        self.frame_id = rospy.get_namespace().strip(
            '/') + '/camera_optical_frame'
        self.cali_file = self.cali_file_folder + rospy.get_namespace().strip(
            "/") + ".yaml"

        # Locate calibration yaml file or use the default otherwise
        if not os.path.isfile(self.cali_file):
            self.logwarn(
                "Calibration not found: %s.\n Using default instead." %
                self.cali_file)
            self.cali_file = (self.cali_file_folder + "default.yaml")

        # Shutdown if no calibration file not found
        if not os.path.isfile(self.cali_file):
            rospy.signal_shutdown("Found no calibration file ... aborting")

        # Load the calibration file
        self.original_camera_info = self.load_camera_info(self.cali_file)
        self.original_camera_info.header.frame_id = self.frame_id
        self.current_camera_info = copy.deepcopy(self.original_camera_info)
        self.update_camera_params()
        self.log("Using calibration file: %s" % self.cali_file)

        # extrinsic calibration
        self.ex_cali_file_folder = '/data/config/calibrations/camera_extrinsic/'
        self.ex_cali_file = self.ex_cali_file_folder + rospy.get_namespace(
        ).strip("/") + ".yaml"
        self.ex_cali = self.readYamlFile(self.ex_cali_file)

        # define homography
        self.homography = self.ex_cali["homography"]

    def update_camera_params(self):
        """ Update the camera parameters based on the current resolution.
        The camera matrix, rectification matrix, and projection matrix depend on
        the resolution of the image.
        As the calibration has been done at a specific resolution, these matrices need
        to be adjusted if a different resolution is being used.
        TODO: Test that this really works.
        """

        scale_width = float(self._res_w) / self.original_camera_info.width
        scale_height = float(self._res_h) / self.original_camera_info.height

        scale_matrix = np.ones(9)
        scale_matrix[0] *= scale_width
        scale_matrix[2] *= scale_width
        scale_matrix[4] *= scale_height
        scale_matrix[5] *= scale_height

        # Adjust the camera matrix resolution
        self.current_camera_info.height = self._res_h
        self.current_camera_info.width = self._res_w

        # Adjust the K matrix
        self.current_camera_info.K = np.array(
            self.original_camera_info.K) * scale_matrix

        # Adjust the P matrix (done by Rohit)
        scale_matrix = np.ones(12)
        scale_matrix[0] *= scale_width
        scale_matrix[2] *= scale_width
        scale_matrix[5] *= scale_height
        scale_matrix[6] *= scale_height
        self.current_camera_info.P = np.array(
            self.original_camera_info.P) * scale_matrix

    @staticmethod
    def load_camera_info(filename):
        """Loads the camera calibration files.
        Loads the intrinsic camera calibration.
        Args:
            filename (:obj:`str`): filename of calibration files.
        Returns:
            :obj:`CameraInfo`: a CameraInfo message object
        """
        with open(filename, 'r') as stream:
            calib_data = yaml.load(stream)
        cam_info = CameraInfo()
        cam_info.width = calib_data['image_width']
        cam_info.height = calib_data['image_height']
        cam_info.K = calib_data['camera_matrix']['data']
        cam_info.D = calib_data['distortion_coefficients']['data']
        cam_info.R = calib_data['rectification_matrix']['data']
        cam_info.P = calib_data['projection_matrix']['data']
        cam_info.distortion_model = calib_data['distortion_model']
        return cam_info

    def onShutdown(self):
        super(ARNode, self).onShutdown()
コード例 #19
0
class ARNode(DTROS):

    def __init__(self, node_name):

        # Initialize the DTROS parent class
        super(ARNode, self).__init__(node_name=node_name,node_type=NodeType.GENERIC)
        self.veh = rospy.get_namespace().strip("/")

        rospack = rospkg.RosPack()
        # Initialize an instance of Renderer giving the model in input.
        self.renderer = Renderer(rospack.get_path('augmented_reality_apriltag') + '/src/models/duckie.obj')
        self.bridge = CvBridge()
        #
        #   Write your code here
        #
        self.homography = self.load_extrinsics()
        self.H = np.array(self.homography).reshape((3, 3))
        self.Hinv = np.linalg.inv(self.H)
        self.at_detector = Detector(searchpath=['apriltags'],
                       families='tag36h11',
                       nthreads=1,
                       quad_decimate=1.0,
                       quad_sigma=0.0,
                       refine_edges=1,
                       decode_sharpening=0.25,
                       debug=0)

        self.sub_compressed_img = rospy.Subscriber(
            "/robot_name/camera_node/image/compressed",
            CompressedImage,
            self.callback,
            queue_size=1
        )

        self.sub_camera_info = rospy.Subscriber(
            "/robot_name/camera_node/camera_info",
            CameraInfo,
            self.cb_camera_info,
            queue_size=1
        )

        self.pub_map_img = rospy.Publisher(
            "~april_tag_duckie/image/compressed",
            CompressedImage,
            queue_size=1,
            dt_topic_type=TopicType.VISUALIZATION,
        )


    def callback(self, msg):
        header = msg.header
        cv_img = self.readImage(msg)

        cameraMatrix = np.array(self.camera_model.K)
        camera_params = (cameraMatrix[0, 0], cameraMatrix[1, 1], cameraMatrix[0, 2], cameraMatrix[1, 2])
        gray_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2GRAY)
        tags = self.at_detector.detect(gray_img, True, camera_params, 0.065)
        Ho = np.array(tags[0].homography)
        print("first", Ho)
        Ho_new = self.projection_matrix(cameraMatrix, Ho)
        print("second", Ho_new)
        img_out = self.renderer.render(cv_img, Ho_new)
        msg_out = self.bridge.cv2_to_compressed_imgmsg(img_out, dst_format='jpeg')
        msg_out.header = header
        self.pub_map_img.publish(msg_out)




    def cb_camera_info(self, msg):
        # unsubscribe from camera_info
        self.loginfo('Camera info message received. Unsubscribing from camera_info topic.')
        # noinspection PyBroadException
        try:
            self.sub_camera_info.shutdown()
        except BaseException:
            self.loginfo('BaseException')
            pass
        # ---
        self.H_camera, self.W_camera = msg.height, msg.width
        # create new camera info
        self.camera_model = PinholeCameraModel()
        self.camera_model.fromCameraInfo(msg)



    
    def projection_matrix(self, intrinsic, homography):
        """
            Write here the compuatation for the projection matrix, namely the matrix
            that maps the camera reference frame to the AprilTag reference frame.
        """

        #
        # Write your code here
        #

        kinv = np.linalg.inv(intrinsic)
        rt = np.dot(kinv, homography)


        r1 = rt[:, 0]
        r2 = rt[:, 1]
        t = rt[:, 2]

        r1_norm = r1
        print(rt)
        r2_new = r2 - np.dot(r1_norm, r2) * r1_norm
        r2_norm = r2_new / np.linalg.norm(r2_new) * np.linalg.norm(r1)
        r3_new = np.cross(r1_norm, r2_norm)
        r3_norm = r3_new / np.linalg.norm(r3_new) * np.linalg.norm(r1)


        matrix = np.zeros((3, 4))
        matrix[:, 0] = r1_norm
        matrix[:, 1] = r2_norm
        matrix[:, 2] = r3_norm
        matrix[:, 3] = t

        h**o = np.dot(intrinsic, matrix)
        return h**o


    def readImage(self, msg_image):
        """
            Convert images to OpenCV images
            Args:
                msg_image (:obj:`CompressedImage`) the image from the camera node
            Returns:
                OpenCV image
        """
        try:
            cv_image = self.bridge.compressed_imgmsg_to_cv2(msg_image)
            return cv_image
        except CvBridgeError as e:
            self.log(e)
            return []

    def readYamlFile(self,fname):
        """
            Reads the 'fname' yaml file and returns a dictionary with its input.

            You will find the calibration files you need in:
            `/data/config/calibrations/`
        """
        with open(fname, 'r') as in_file:
            try:
                yaml_dict = yaml.load(in_file)
                return yaml_dict
            except yaml.YAMLError as exc:
                self.log("YAML syntax error. File: %s fname. Exc: %s"
                         %(fname, exc), type='fatal')
                rospy.signal_shutdown()
                return


    def onShutdown(self):
        super(ARNode, self).onShutdown()

    def load_extrinsics(self):
        """
        Loads the homography matrix from the extrinsic calibration file.
        Returns:
            :obj:`numpy array`: the loaded homography matrix
        """
        # load intrinsic calibration
        cali_file_folder = '/data/config/calibrations/camera_extrinsic/'
        cali_file = cali_file_folder + rospy.get_namespace().strip("/") + ".yaml"

        # Locate calibration yaml file or use the default otherwise
        if not os.path.isfile(cali_file):
            self.log("Can't find calibration file: %s.\n Using default calibration instead."
                     % cali_file, 'warn')
            cali_file = (cali_file_folder + "default.yaml")

        # Shutdown if no calibration file not found
        if not os.path.isfile(cali_file):
            msg = 'Found no calibration file ... aborting'
            self.log(msg, 'err')
            rospy.signal_shutdown(msg)

        try:
            with open(cali_file, 'r') as stream:
                calib_data = yaml.load(stream)
        except yaml.YAMLError:
            msg = 'Error in parsing calibration file %s ... aborting' % cali_file
            self.log(msg, 'err')
            rospy.signal_shutdown(msg)

        return calib_data['homography']