def test_map_overlap_value_error(): data = np.array([[0., 0.], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1., 1.], [1., 0.], [0.25, 0.75], [0.75, 0.25], [0., 1.]]) t = Topology() t.fit_transform(data, metric=None, lens=None) with pytest.raises(ValueError): t.map(resolution=10, overlap=-0.1, clusterer=None)
def test_transform_multi_lens(): data = np.array([[0., 0.], [0., 1.], [1., 1.]]) t = Topology() metric = Distance(metric="hamming") lens = [L1Centrality(), GaussianDensity(h=0.25)] t.fit_transform(data, metric=metric, lens=lens) test_data = np.array([[1., 0.], [0., 1.], [1., 0.]]) assert_array_equal(t.pointcloud, test_data)
def test_color_dtype(): data = np.array([[0., 0.], [0.1, 0.1], [0.2, 0.2], [0.2, 0.8], [0.1, 0.9], [0., 1.], [0.8, 0.8], [0.9, 0.9], [1., 1.]]) target = np.array([[0], [0], [0], [1], [1], [1], [2], [2], [2]]) t = Topology() t.fit_transform(data, metric=None, lens=None) t.map(resolution=2, overlap=0.3, clusterer=None) with pytest.raises(Exception): t.color(target, dtype="somecategory", ctype="rgb", normalized=False)
def test_color_different_size_input(): data = np.array([[0., 0.], [0.1, 0.1], [0.2, 0.2], [0.2, 0.8], [0.1, 0.9], [0., 1.], [0.8, 0.8], [0.9, 0.9], [1., 1.]]) target = np.array([0, 1, 2]) t = Topology() t.fit_transform(data, metric=None, lens=None) t.map(resolution=2, overlap=0.3, clusterer=None) with pytest.raises(ValueError): t.color(target, dtype="categorical", ctype="rgb", normalized=False)
def test_transform_none_none(): data = np.array([[0., 0.], [1., 1.]]) t = Topology() metric = None lens = None t.fit_transform(data, metric=metric, lens=lens) test_data = np.array([[0., 0.], [1., 1.]]) assert_array_equal(t.pointcloud, test_data)
def test_transform_none_pca(): data = np.array([[0., 1.], [1., 0.]]) t = Topology() metric = None lens = [PCA(components=[0])] t.fit_transform(data, metric=metric, lens=lens) test_data = np.array([0., 1.]) test_data = test_data.reshape(test_data.shape[0], 1) assert_array_equal(t.pointcloud, test_data)
def test_color_numerical_rgb(): data = np.array([[0., 0.], [0.1, 0.1], [0.2, 0.2], [0.2, 0.8], [0.1, 0.9], [0., 1.], [0.8, 0.8], [0.9, 0.9], [1., 1.]]) target = np.array([[0], [0], [0], [1], [1.1], [0.9], [2], [2], [2]]) t = Topology() t.fit_transform(data, metric=None, lens=None) clusterer = DBSCAN(eps=0.2, min_samples=3) t.map(resolution=2, overlap=0.3, clusterer=clusterer) t.color(target, dtype="numerical", ctype="rgb", normalized=False) test_color = ['#0000b2', '#00b200', '#b2b200'] assert t.colorlist == test_color
def test_map(): data = np.array([[0., 0.], [0.25, 0.25], [0.5, 0.5], [0.75, 0.75], [1., 1.], [1., 0.], [0.25, 0.75], [0.75, 0.25], [0., 1.]]) t = Topology() t.fit_transform(data, metric=None, lens=None) clusterer = DBSCAN(eps=0.4, min_samples=3) t.map(resolution=2, overlap=0.3, clusterer=clusterer) test_nodes = np.array([[0.25, 0.25], [0.25, 0.75], [0.75, 0.25], [0.75, 0.75]]) test_edges = np.array([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]) assert_array_equal(t.nodes, test_nodes) assert_array_equal(t.edges, test_edges)
def test_color_categorical_gray(): data = np.array([[0., 0.], [0.1, 0.1], [0.2, 0.2], [0.2, 0.8], [0.1, 0.9], [0., 1.], [0.8, 0.8], [0.9, 0.9], [1., 1.]]) target = np.array([[0], [0], [0], [1], [1], [1], [2], [2], [2]]) t = Topology() t.fit_transform(data, metric=None, lens=None) clusterer = DBSCAN(eps=0.2, min_samples=3) t.map(resolution=2, overlap=0.3, clusterer=clusterer) t.color(target, dtype="categorical", ctype="gray", normalized=False) test_color = ['#dcdcdc', '#787878', '#464646'] assert t.colorlist == test_color
def test_transform_3darray_input(): data = np.array([[[]]]) t = Topology() with pytest.raises(ValueError): t.fit_transform(data)
def test_transform_none_input(): data = None t = Topology() with pytest.raises(Exception): t.fit_transform(data)