def update_LR(self, lr_group, isite): first_LR, second_LR, third_LR, forth_LR = lr_group cv_isite = self.cv_mpo[isite - 1] dag_cv_isite = moveaxis(cv_isite, (1, 2), (2, 1)) if self.method == "1site": if not self.cv_mpo.to_right: path1 = [([0, 1], "abcd, efga -> bcdefg"), ([3, 0], "bcdefg, hgib -> cdefhi"), ([2, 0], "cdefhi, jikc -> defhjk"), ([1, 0], "defhjk, lkfd -> ehjl")] path2 = [([0, 1], "ab, cdea->bcde"), ([1, 0], "bcde, fedb->cf")] first_LR[isite - 1] = multi_tensor_contract( path1, first_LR[isite], dag_cv_isite, self.a_oper[isite - 1], self.a_oper[isite - 1], cv_isite) second_LR[isite - 1] = multi_tensor_contract( path1, second_LR[isite], dag_cv_isite, self.a_oper[isite - 1], cv_isite, self.h_mpo[isite - 1]) third_LR[isite - 1] = multi_tensor_contract( path1, third_LR[isite], self.h_mpo[isite - 1], dag_cv_isite, cv_isite, self.h_mpo[isite - 1]) forth_LR[isite - 1] = multi_tensor_contract( path2, forth_LR[isite], moveaxis(self.b_mpo[isite - 1], (1, 2), (2, 1)), cv_isite) else: path1 = [([0, 1], "abcd, aefg -> bcdefg"), ([3, 0], "bcdefg, bfhi -> cdeghi"), ([2, 0], "cdeghi, chjk -> degijk"), ([1, 0], "degijk, djel -> gikl")] path2 = [([0, 1], "ab, acde->bcde"), ([1, 0], "bcde, bdcf->ef")] first_LR[isite] = multi_tensor_contract( path1, first_LR[isite - 1], dag_cv_isite, self.a_oper[isite - 1], self.a_oper[isite - 1], cv_isite) second_LR[isite] = multi_tensor_contract( path1, second_LR[isite - 1], dag_cv_isite, self.a_oper[isite - 1], cv_isite, self.h_mpo[isite - 1]) third_LR[isite] = multi_tensor_contract( path1, third_LR[isite - 1], self.h_mpo[isite - 1], dag_cv_isite, cv_isite, self.h_mpo[isite - 1]) forth_LR[isite] = multi_tensor_contract( path2, forth_LR[isite - 1], moveaxis(self.b_mpo[isite - 1], (1, 2), (2, 1)), cv_isite) else: # 2site for finite temperature is too expensive, so I drop it # (at least for now) raise NotImplementedError return first_LR, second_LR, third_LR, forth_LR
def renormalization_svd(cstruct, qnbigl, qnbigr, domain, nexciton, Mmax, percent=0): """ get the new mps, mpsdim, mpdqn, complementary mps to get the next guess with singular value decomposition method (1 root) """ assert domain in ["R", "L"] Uset, SUset, qnlnew, Vset, SVset, qnrnew = svd_qn.Csvd(cstruct, qnbigl, qnbigr, nexciton, system=domain) if domain == "R": mps, mpsdim, mpsqn, compmps = updatemps(Vset, SVset, qnrnew, Uset, nexciton, Mmax, percent=percent) return ( moveaxis(mps.reshape(list(qnbigr.shape) + [mpsdim]), -1, 0), mpsdim, mpsqn, compmps.reshape(list(qnbigl.shape) + [mpsdim]), ) else: mps, mpsdim, mpsqn, compmps = updatemps(Uset, SUset, qnlnew, Vset, nexciton, Mmax, percent=percent) return ( mps.reshape(list(qnbigl.shape) + [mpsdim]), mpsdim, mpsqn, moveaxis(compmps.reshape(list(qnbigr.shape) + [mpsdim]), -1, 0), )
def conj_trans(self): new_mpo = self.metacopy() for i in range(new_mpo.site_num): new_mpo[i] = moveaxis(self[i], (1, 2), (2, 1)).conj() new_mpo.qn = [[-i for i in mt_qn] for mt_qn in new_mpo.qn] return new_mpo
def renormalization_ddm(cstruct, qnbigl, qnbigr, domain, nexciton, Mmax, percent=0): """ get the new mps, mpsdim, mpdqn, complementary mps to get the next guess with diagonalize reduced density matrix method (> 1 root) """ nroots = len(cstruct) ddm = 0.0 for iroot in range(nroots): if domain == "R": ddm += np.tensordot( cstruct[iroot], cstruct[iroot], axes=(range(qnbigl.ndim), range(qnbigl.ndim)), ) else: ddm += np.tensordot( cstruct[iroot], cstruct[iroot], axes=( range(qnbigl.ndim, cstruct[0].ndim), range(qnbigl.ndim, cstruct[0].ndim), ), ) ddm /= float(nroots) if domain == "L": Uset, Sset, qnnew = svd_qn.Csvd(ddm, qnbigl, qnbigl, nexciton, ddm=True) else: Uset, Sset, qnnew = svd_qn.Csvd(ddm, qnbigr, qnbigr, nexciton, ddm=True) mps, mpsdim, mpsqn, compmps = updatemps(Uset, Sset, qnnew, None, nexciton, Mmax, percent=percent) if domain == "R": return ( moveaxis(mps.reshape(list(qnbigr.shape) + [mpsdim]), -1, 0), mpsdim, mpsqn, tensordot( Matrix(cstruct[0]), mps.reshape(list(qnbigr.shape) + [mpsdim]), axes=(range(qnbigl.ndim, cstruct[0].ndim), range(qnbigr.ndim)), ), ) else: return ( mps.reshape(list(qnbigl.shape) + [mpsdim]), mpsdim, mpsqn, tensordot( mps.reshape(list(qnbigl.shape) + [mpsdim]), Matrix(cstruct[0]), axes=(range(qnbigl.ndim), range(qnbigl.ndim)), ), )
def update_LR(self, lr_group, direction, isite): first_LR, second_LR, third_LR, forth_LR = lr_group assert direction in ["left", "right"] if self.method == "1site": if direction == "left": path1 = [([0, 1], "abc, defa -> bcdef"), ([2, 0], "bcdef, gfhb -> cdegh"), ([1, 0], "cdegh, ihec -> dgi")] first_LR[isite - 1] = multi_tensor_contract( path1, first_LR[isite], moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)), self.a_oper[isite - 1], self.cv_mpo[isite - 1]) path2 = [([0, 1], "abcd, efga -> bcdefg"), ([3, 0], "bcdefg, hgib -> cdefhi"), ([2, 0], "cdefhi, jikc -> defhjk"), ([1, 0], "defhjk, lkfd -> ehjl")] path4 = [([0, 1], "ab, cdea->bcde"), ([1, 0], "bcde, fedb->cf")] second_LR[isite - 1] = multi_tensor_contract( path2, second_LR[isite], moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)), self.b_oper[isite - 1], self.cv_mpo[isite - 1], self.h_mpo[isite - 1]) third_LR[isite - 1] = multi_tensor_contract( path2, third_LR[isite], self.h_mpo[isite - 1], moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)), self.cv_mpo[isite - 1], self.h_mpo[isite - 1]) forth_LR[isite - 1] = multi_tensor_contract( path4, forth_LR[isite], moveaxis(self.a_ket_mpo[isite - 1], (1, 2), (2, 1)), self.cv_mpo[isite - 1]) elif direction == "right": path1 = [([0, 1], "abc, adef -> bcdef"), ([2, 0], "bcdef, begh -> cdfgh"), ([1, 0], "cdfgh, cgdi -> fhi")] first_LR[isite] = multi_tensor_contract( path1, first_LR[isite - 1], moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)), self.a_oper[isite - 1], self.cv_mpo[isite - 1]) path2 = [([0, 1], "abcd, aefg -> bcdefg"), ([3, 0], "bcdefg, bfhi -> cdeghi"), ([2, 0], "cdeghi, chjk -> degijk"), ([1, 0], "degijk, djel -> gikl")] path4 = [([0, 1], "ab, acde->bcde"), ([1, 0], "bcde, bdcf->ef")] second_LR[isite] = multi_tensor_contract( path2, second_LR[isite - 1], moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)), self.b_oper[isite - 1], self.cv_mpo[isite - 1], self.h_mpo[isite - 1]) third_LR[isite] = multi_tensor_contract( path2, third_LR[isite - 1], self.h_mpo[isite - 1], moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)), self.cv_mpo[isite - 1], self.h_mpo[isite - 1]) forth_LR[isite] = multi_tensor_contract( path4, forth_LR[isite - 1], moveaxis(self.a_ket_mpo[isite - 1], (1, 2), (2, 1)), self.cv_mpo[isite - 1]) else: # 2site for finite temperature is too expensive, so I drop it # (at least for now) raise NotImplementedError return first_LR, second_LR, third_LR, forth_LR
def initialize_LR(self, direction): first_LR = [np.ones((1, 1, 1))] second_LR = [np.ones((1, 1, 1, 1))] forth_LR = [np.ones((1, 1))] for isite in range(1, len(self.cv_mpo)): first_LR.append(None) second_LR.append(None) forth_LR.append(None) first_LR.append(np.ones((1, 1, 1))) second_LR.append(np.ones((1, 1, 1, 1))) third_LR = copy.deepcopy(second_LR) forth_LR.append(np.ones((1, 1))) if direction == "right": for isite in range(len(self.cv_mpo), 1, -1): path1 = [([0, 1], "abc, defa -> bcdef"), ([2, 0], "bcdef, gfhb -> cdegh"), ([1, 0], "cdegh, ihec -> dgi")] first_LR[isite - 1] = asnumpy( multi_tensor_contract( path1, first_LR[isite], moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)), self.a_oper[isite - 1], self.cv_mpo[isite - 1])) path2 = [([0, 1], "abcd, efga -> bcdefg"), ([3, 0], "bcdefg, hgib -> cdefhi"), ([2, 0], "cdefhi, jikc -> defhjk"), ([1, 0], "defhjk, lkfd -> ehjl")] path4 = [([0, 1], "ab, cdea->bcde"), ([1, 0], "bcde, fedb->cf")] second_LR[isite - 1] = asnumpy( multi_tensor_contract( path2, second_LR[isite], moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)), self.b_oper[isite - 1], self.cv_mpo[isite - 1], self.h_mpo[isite - 1])) third_LR[isite - 1] = asnumpy( multi_tensor_contract( path2, third_LR[isite], self.h_mpo[isite - 1], moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)), self.cv_mpo[isite - 1], self.h_mpo[isite - 1])) forth_LR[isite - 1] = asnumpy( multi_tensor_contract( path4, forth_LR[isite], moveaxis(self.a_ket_mpo[isite - 1], (1, 2), (2, 1)), self.cv_mpo[isite - 1])) if direction == "left": for isite in range(1, len(self.cv_mpo)): path1 = [([0, 1], "abc, adef -> bcdef"), ([2, 0], "bcdef, begh -> cdfgh"), ([1, 0], "cdfgh, cgdi -> fhi")] first_LR[isite] = asnumpy( multi_tensor_contract( path1, first_LR[isite - 1], moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)), self.a_oper[isite - 1], self.cv_mpo[isite - 1])) path2 = [([0, 1], "abcd, aefg -> bcdefg"), ([3, 0], "bcdefg, bfhi -> cdeghi"), ([2, 0], "cdeghi, chjk -> degijk"), ([1, 0], "degijk, djel -> gikl")] path4 = [([0, 1], "ab, acde->bcde"), ([1, 0], "bcde, bdcf->ef")] second_LR[isite] = asnumpy( multi_tensor_contract( path2, second_LR[isite - 1], moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)), self.b_oper[isite - 1], self.cv_mpo[isite - 1], self.h_mpo[isite - 1])) third_LR[isite] = asnumpy( multi_tensor_contract( path2, third_LR[isite - 1], self.h_mpo[isite - 1], moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)), self.cv_mpo[isite - 1], self.h_mpo[isite - 1])) forth_LR[isite] = asnumpy( multi_tensor_contract( path4, forth_LR[isite - 1], moveaxis(self.a_ket_mpo[isite - 1], (1, 2), (2, 1)), self.cv_mpo[isite - 1])) return [first_LR, second_LR, third_LR, forth_LR]
def optimize_cv(self, lr_group, direction, isite, num, percent=0): if self.spectratype == "abs": # quantum number restriction, |1><0| up_exciton, down_exciton = 1, 0 elif self.spectratype == "emi": # quantum number restriction, |0><1| up_exciton, down_exciton = 0, 1 nexciton = 1 first_LR, second_LR, third_LR, forth_LR = lr_group if self.method == "1site": add_list = [isite - 1] first_L = asxp(first_LR[isite - 1]) first_R = asxp(first_LR[isite]) second_L = asxp(second_LR[isite - 1]) second_R = asxp(second_LR[isite]) third_L = asxp(third_LR[isite - 1]) third_R = asxp(third_LR[isite]) forth_L = asxp(forth_LR[isite - 1]) forth_R = asxp(forth_LR[isite]) else: add_list = [isite - 2, isite - 1] first_L = asxp(first_LR[isite - 2]) first_R = asxp(first_LR[isite]) second_L = asxp(second_LR[isite - 2]) second_R = asxp(second_LR[isite]) third_L = asxp(third_LR[isite - 2]) third_R = asxp(third_LR[isite]) forth_L = asxp(forth_LR[isite - 2]) forth_R = asxp(forth_LR[isite]) xqnmat, xqnbigl, xqnbigr, xshape = \ self.construct_X_qnmat(add_list, direction) dag_qnmat, dag_qnbigl, dag_qnbigr = self.swap(xqnmat, xqnbigl, xqnbigr, direction) nonzeros = np.sum(self.condition(dag_qnmat, [down_exciton, up_exciton])) if self.method == "1site": guess = moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)) else: guess = tensordot(moveaxis(self.cv_mpo[isite - 2], (1, 2), (2, 1)), moveaxis(self.cv_mpo[isite - 1]), axes=(-1, 0)) guess = guess[self.condition(dag_qnmat, [down_exciton, up_exciton])].reshape( nonzeros, 1) if self.method == "1site": # define dot path path_1 = [([0, 1], "abc, adef -> bcdef"), ([2, 0], "bcdef, begh -> cdfgh"), ([1, 0], "cdfgh, fhi -> cdgi")] path_2 = [([0, 1], "abcd, aefg -> bcdefg"), ([3, 0], "bcdefg, bfhi -> cdeghi"), ([2, 0], "cdeghi, djek -> cghijk"), ([1, 0], "cghijk, gilk -> chjl")] path_4 = [([0, 1], "ab, acde -> bcde"), ([1, 0], "bcde, ef -> bcdf")] vecb = multi_tensor_contract( path_4, forth_L, moveaxis(self.a_ket_mpo[isite - 1], (1, 2), (2, 1)), forth_R) vecb = -self.eta * vecb a_oper_isite = asxp(self.a_oper[isite - 1]) b_oper_isite = asxp(self.b_oper[isite - 1]) h_mpo_isite = asxp(self.h_mpo[isite - 1]) # construct preconditioner Idt = xp.identity(h_mpo_isite.shape[1]) M1_1 = xp.einsum('aea->ae', first_L) M1_2 = xp.einsum('eccf->ecf', a_oper_isite) M1_3 = xp.einsum('dfd->df', first_R) M1_4 = xp.einsum('bb->b', Idt) path_m1 = [([0, 1], "ae,b->aeb"), ([2, 0], "aeb,ecf->abcf"), ([1, 0], "abcf, df->abcd")] pre_M1 = multi_tensor_contract(path_m1, M1_1, M1_4, M1_2, M1_3) pre_M1 = pre_M1[self.condition(dag_qnmat, [down_exciton, up_exciton])] M2_1 = xp.einsum('aeag->aeg', second_L) M2_2 = xp.einsum('eccf->ecf', b_oper_isite) M2_3 = xp.einsum('gbbh->gbh', h_mpo_isite) M2_4 = xp.einsum('dfdh->dfh', second_R) path_m2 = [([0, 1], "aeg,gbh->aebh"), ([2, 0], "aebh,ecf->abchf"), ([1, 0], "abhcf,dfh->abcd")] pre_M2 = multi_tensor_contract(path_m2, M2_1, M2_3, M2_2, M2_4) pre_M2 = pre_M2[self.condition(dag_qnmat, [down_exciton, up_exciton])] M4_1 = xp.einsum('faah->fah', third_L) M4_4 = xp.einsum('gddi->gdi', third_R) M4_5 = xp.einsum('cc->c', Idt) M4_path = [([0, 1], "fah,febg->ahebg"), ([2, 0], "ahebg,hjei->abgji"), ([1, 0], "abgji,gdi->abjd")] pre_M4 = multi_tensor_contract(M4_path, M4_1, h_mpo_isite, h_mpo_isite, M4_4) pre_M4 = xp.einsum('abbd->abd', pre_M4) pre_M4 = xp.tensordot(pre_M4, M4_5, axes=0) pre_M4 = xp.moveaxis(pre_M4, [2, 3], [3, 2])[self.condition( dag_qnmat, [down_exciton, up_exciton])] pre_M = (pre_M1 + 2 * pre_M2 + pre_M4) indices = np.array(range(nonzeros)) indptr = np.array(range(nonzeros + 1)) pre_M = scipy.sparse.csc_matrix((asnumpy(pre_M), indices, indptr), shape=(nonzeros, nonzeros)) M_x = lambda x: scipy.sparse.linalg.spsolve(pre_M, x) M = scipy.sparse.linalg.LinearOperator((nonzeros, nonzeros), M_x) count = 0 def hop(x): nonlocal count count += 1 dag_struct = asxp(self.dag2mat(xshape, x, dag_qnmat, direction)) if self.method == "1site": M1 = multi_tensor_contract(path_1, first_L, dag_struct, a_oper_isite, first_R) M2 = multi_tensor_contract(path_2, second_L, dag_struct, b_oper_isite, h_mpo_isite, second_R) M2 = xp.moveaxis(M2, (1, 2), (2, 1)) M3 = multi_tensor_contract(path_2, third_L, h_mpo_isite, dag_struct, h_mpo_isite, third_R) M3 = xp.moveaxis(M3, (1, 2), (2, 1)) cout = M1 + 2 * M2 + M3 cout = cout[self.condition(dag_qnmat, [down_exciton, up_exciton])].reshape( nonzeros, 1) return asnumpy(cout) # Matrix A and Vector b vecb = asnumpy(vecb)[self.condition( dag_qnmat, [down_exciton, up_exciton])].reshape(nonzeros, 1) mata = scipy.sparse.linalg.LinearOperator((nonzeros, nonzeros), matvec=hop) # conjugate gradient method # x, info = scipy.sparse.linalg.cg(MatA, VecB, atol=0) if num == 1: x, info = scipy.sparse.linalg.cg(mata, vecb, tol=1.e-5, maxiter=500, M=M, atol=0) else: x, info = scipy.sparse.linalg.cg(mata, vecb, tol=1.e-5, x0=guess, maxiter=500, M=M, atol=0) # logger.info(f"linear eq dim: {nonzeros}") # logger.info(f'times for hop:{count}') self.hop_time.append(count) if info != 0: logger.warning( f"cg not converged, vecb.norm:{np.linalg.norm(vecb)}") l_value = np.inner( hop(x).reshape(1, nonzeros), x.reshape(1, nonzeros)) - \ 2 * np.inner(vecb.reshape(1, nonzeros), x.reshape(1, nonzeros)) x = self.dag2mat(xshape, x, dag_qnmat, direction) if self.method == "1site": x = np.moveaxis(x, [1, 2], [2, 1]) x, xdim, xqn, compx = self.x_svd(x, xqnbigl, xqnbigr, nexciton, direction, percent=percent) if self.method == "1site": self.cv_mpo[isite - 1] = x if direction == "left": if isite != 1: self.cv_mpo[isite - 2] = \ tensordot(self.cv_mpo[isite - 2], compx, axes=(-1, 0)) self.cv_mpo.qn[isite - 1] = xqn else: self.cv_mpo[isite - 1] = \ tensordot(compx, self.cv_mpo[isite - 1], axes=(-1, 0)) elif direction == "right": if isite != len(self.cv_mpo): self.cv_mpo[isite] = \ tensordot(compx, self.cv_mpo[isite], axes=(-1, 0)) self.cv_mpo.qn[isite] = xqn else: self.cv_mpo[isite - 1] = \ tensordot(self.cv_mpo[isite - 1], compx, axes=(-1, 0)) else: if direction == "left": self.cv_mpo[isite - 2] = compx self.cv_mpo[isite - 1] = x else: self.cv_mpo[isite - 2] = x self.cv_mpo[isite - 1] = compx self.cv_mpo.qn[isite - 1] = xqn return l_value[0][0]
def initialize_LR(self): first_LR = [np.ones((1, 1, 1, 1))] forth_LR = [np.ones((1, 1))] for isite in range(1, len(self.cv_mpo)): first_LR.append(None) forth_LR.append(None) first_LR.append(np.ones((1, 1, 1, 1))) second_LR = copy.deepcopy(first_LR) third_LR = copy.deepcopy(first_LR) forth_LR.append(np.ones((1, 1))) if self.cv_mpo.to_right: for isite in range(len(self.cv_mpo), 1, -1): cv_isite = self.cv_mpo[isite - 1] dag_cv_isite = moveaxis(cv_isite, (1, 2), (2, 1)) path1 = [([0, 1], "abcd, efga -> bcdefg"), ([3, 0], "bcdefg, hgib -> cdefhi"), ([2, 0], "cdefhi, jikc -> defhjk"), ([1, 0], "defhjk, lkfd -> ehjl")] path2 = [([0, 1], "ab, cdea->bcde"), ([1, 0], "bcde, fedb->cf")] first_LR[isite - 1] = asnumpy( multi_tensor_contract(path1, first_LR[isite], dag_cv_isite, self.a_oper[isite - 1], self.a_oper[isite - 1], cv_isite)) second_LR[isite - 1] = asnumpy( multi_tensor_contract(path1, second_LR[isite], dag_cv_isite, self.a_oper[isite - 1], cv_isite, self.h_mpo[isite - 1])) third_LR[isite - 1] = asnumpy( multi_tensor_contract(path1, third_LR[isite], self.h_mpo[isite - 1], dag_cv_isite, cv_isite, self.h_mpo[isite - 1])) forth_LR[isite - 1] = asnumpy( multi_tensor_contract( path2, forth_LR[isite], moveaxis(self.b_mpo[isite - 1], (1, 2), (2, 1)), cv_isite)) else: for isite in range(1, len(self.cv_mpo)): cv_isite = self.cv_mpo[isite - 1] dag_cv_isite = moveaxis(cv_isite, (1, 2), (2, 1)) path1 = [([0, 1], "abcd, aefg -> bcdefg"), ([3, 0], "bcdefg, bfhi -> cdeghi"), ([2, 0], "cdeghi, chjk -> degijk"), ([1, 0], "degijk, djel -> gikl")] path2 = [([0, 1], "ab, acde->bcde"), ([1, 0], "bcde, bdcf->ef")] first_LR[isite] = asnumpy( multi_tensor_contract(path1, first_LR[isite - 1], dag_cv_isite, self.a_oper[isite - 1], self.a_oper[isite - 1], cv_isite)) second_LR[isite] = asnumpy( multi_tensor_contract(path1, second_LR[isite - 1], dag_cv_isite, self.a_oper[isite - 1], cv_isite, self.h_mpo[isite - 1])) third_LR[isite] = asnumpy( multi_tensor_contract(path1, third_LR[isite - 1], self.h_mpo[isite - 1], dag_cv_isite, cv_isite, self.h_mpo[isite - 1])) forth_LR[isite] = asnumpy( multi_tensor_contract( path2, forth_LR[isite - 1], moveaxis(self.b_mpo[isite - 1], (1, 2), (2, 1)), cv_isite)) return [first_LR, second_LR, third_LR, forth_LR]
def optimize_cv(self, lr_group, isite, percent=0): if self.spectratype == "abs": # quantum number restriction, |1><0| up_exciton, down_exciton = 1, 0 elif self.spectratype == "emi": # quantum number restriction, |0><1| up_exciton, down_exciton = 0, 1 nexciton = 1 first_LR, second_LR, third_LR, forth_LR = lr_group if self.method == "1site": add_list = [isite - 1] first_L = asxp(first_LR[isite - 1]) first_R = asxp(first_LR[isite]) second_L = asxp(second_LR[isite - 1]) second_R = asxp(second_LR[isite]) third_L = asxp(third_LR[isite - 1]) third_R = asxp(third_LR[isite]) forth_L = asxp(forth_LR[isite - 1]) forth_R = asxp(forth_LR[isite]) else: add_list = [isite - 2, isite - 1] first_L = asxp(first_LR[isite - 2]) first_R = asxp(first_LR[isite]) second_L = asxp(second_LR[isite - 2]) second_R = asxp(second_LR[isite]) third_L = asxp(third_LR[isite - 2]) third_R = asxp(third_LR[isite]) forth_L = asxp(forth_LR[isite - 2]) forth_R = asxp(forth_LR[isite]) xqnmat, xqnbigl, xqnbigr, xshape = \ self.construct_X_qnmat(add_list) dag_qnmat, dag_qnbigl, dag_qnbigr = self.swap(xqnmat, xqnbigl, xqnbigr) nonzeros = int( np.sum(self.condition(dag_qnmat, [down_exciton, up_exciton]))) if self.method == "1site": guess = moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1)) else: guess = tensordot(moveaxis(self.cv_mpo[isite - 2], (1, 2), (2, 1)), moveaxis(self.cv_mpo[isite - 1]), axes=(-1, 0)) guess = guess[self.condition(dag_qnmat, [down_exciton, up_exciton])] if self.method == "1site": # define dot path path_1 = [([0, 1], "abcd, aefg -> bcdefg"), ([3, 0], "bcdefg, bfhi -> cdeghi"), ([2, 0], "cdeghi, chjk -> degijk"), ([1, 0], "degijk, gikl -> dejl")] path_2 = [([0, 1], "abcd, aefg -> bcdefg"), ([3, 0], "bcdefg, bfhi -> cdeghi"), ([2, 0], "cdeghi, djek -> cghijk"), ([1, 0], "cghijk, gilk -> chjl")] path_3 = [([0, 1], "ab, acde -> bcde"), ([1, 0], "bcde, ef -> bcdf")] vecb = multi_tensor_contract( path_3, forth_L, moveaxis(self.b_mpo[isite - 1], (1, 2), (2, 1)), forth_R)[self.condition(dag_qnmat, [down_exciton, up_exciton])] a_oper_isite = asxp(self.a_oper[isite - 1]) h_mpo_isite = asxp(self.h_mpo[isite - 1]) # construct preconditioner Idt = xp.identity(h_mpo_isite.shape[1]) M1_1 = xp.einsum('abca->abc', first_L) path_m1 = [([0, 1], "abc, bdef->acdef"), ([1, 0], "acdef, cegh->adfgh")] M1_2 = multi_tensor_contract(path_m1, M1_1, a_oper_isite, a_oper_isite) M1_2 = xp.einsum("abcbd->abcd", M1_2) M1_3 = xp.einsum('ecde->ecd', first_R) M1_4 = xp.einsum('ff->f', Idt) path_m1 = [([0, 1], "abcd,ecd->abe"), ([1, 0], "abe,f->abef")] pre_M1 = multi_tensor_contract(path_m1, M1_2, M1_3, M1_4) pre_M1 = xp.moveaxis(pre_M1, [-2, -1], [-1, -2])[self.condition( dag_qnmat, [down_exciton, up_exciton])] M2_1 = xp.einsum('aeag->aeg', second_L) M2_2 = xp.einsum('eccf->ecf', a_oper_isite) M2_3 = xp.einsum('gbbh->gbh', h_mpo_isite) M2_4 = xp.einsum('dfdh->dfh', second_R) path_m2 = [([0, 1], "aeg,gbh->aebh"), ([2, 0], "aebh,ecf->abchf"), ([1, 0], "abhcf,dfh->abcd")] pre_M2 = multi_tensor_contract(path_m2, M2_1, M2_3, M2_2, M2_4) pre_M2 = pre_M2[self.condition(dag_qnmat, [down_exciton, up_exciton])] M4_1 = xp.einsum('faah->fah', third_L) M4_4 = xp.einsum('gddi->gdi', third_R) M4_5 = xp.einsum('cc->c', Idt) M4_path = [([0, 1], "fah,febg->ahebg"), ([2, 0], "ahebg,hjei->abgji"), ([1, 0], "abgji,gdi->abjd")] pre_M4 = multi_tensor_contract(M4_path, M4_1, h_mpo_isite, h_mpo_isite, M4_4) pre_M4 = xp.einsum('abbd->abd', pre_M4) pre_M4 = xp.tensordot(pre_M4, M4_5, axes=0) pre_M4 = xp.moveaxis(pre_M4, [2, 3], [3, 2])[self.condition( dag_qnmat, [down_exciton, up_exciton])] M_x = lambda x: asnumpy( asxp(x) / (pre_M1 + 2 * pre_M2 + pre_M4 + xp.ones(nonzeros) * self.eta**2)) pre_M = scipy.sparse.linalg.LinearOperator((nonzeros, nonzeros), M_x) count = 0 def hop(x): nonlocal count count += 1 dag_struct = asxp(self.dag2mat(xshape, x, dag_qnmat)) if self.method == "1site": M1 = multi_tensor_contract(path_1, first_L, dag_struct, a_oper_isite, a_oper_isite, first_R) M2 = multi_tensor_contract(path_2, second_L, dag_struct, a_oper_isite, h_mpo_isite, second_R) M2 = xp.moveaxis(M2, (1, 2), (2, 1)) M3 = multi_tensor_contract(path_2, third_L, h_mpo_isite, dag_struct, h_mpo_isite, third_R) M3 = xp.moveaxis(M3, (1, 2), (2, 1)) cout = M1 + 2 * M2 + M3 + dag_struct * self.eta**2 cout = cout[self.condition(dag_qnmat, [down_exciton, up_exciton])] return asnumpy(cout) # Matrix A mat_a = scipy.sparse.linalg.LinearOperator((nonzeros, nonzeros), matvec=hop) x, info = scipy.sparse.linalg.cg(mat_a, asnumpy(vecb), tol=1.e-5, x0=asnumpy(guess), maxiter=500, M=pre_M, atol=0) # logger.info(f"linear eq dim: {nonzeros}") # logger.info(f'times for hop:{count}') self.hop_time.append(count) if info != 0: logger.warning( f"cg not converged, vecb.norm:{xp.linalg.norm(vecb)}") l_value = xp.dot(asxp(hop(x)), asxp(x)) - 2 * xp.dot(vecb, asxp(x)) x = self.dag2mat(xshape, x, dag_qnmat) if self.method == "1site": x = np.moveaxis(x, [1, 2], [2, 1]) x, xdim, xqn, compx = self.x_svd(x, xqnbigl, xqnbigr, nexciton, percent=percent) if self.method == "1site": self.cv_mpo[isite - 1] = x if not self.cv_mpo.to_right: if isite != 1: self.cv_mpo[isite - 2] = \ tensordot(self.cv_mpo[isite - 2], compx, axes=(-1, 0)) self.cv_mpo.qn[isite - 1] = xqn self.cv_mpo.qnidx = isite - 2 else: self.cv_mpo[isite - 1] = \ tensordot(compx, self.cv_mpo[isite - 1], axes=(-1, 0)) self.cv_mpo.qnidx = 0 else: if isite != len(self.cv_mpo): self.cv_mpo[isite] = \ tensordot(compx, self.cv_mpo[isite], axes=(-1, 0)) self.cv_mpo.qn[isite] = xqn self.cv_mpo.qnidx = isite else: self.cv_mpo[isite - 1] = \ tensordot(self.cv_mpo[isite - 1], compx, axes=(-1, 0)) self.cv_mpo.qnidx = self.cv_mpo.site_num - 1 else: if not self.cv_mpo.to_right: self.cv_mpo[isite - 2] = compx self.cv_mpo[isite - 1] = x self.cv_mpo.qnidx = isite - 2 else: self.cv_mpo[isite - 2] = x self.cv_mpo[isite - 1] = compx self.cv_mpo.qnidx = isite - 1 self.cv_mpo.qn[isite - 1] = xqn return float(l_value)