def test_gridsearch_metrics_threads(n_threads=3): X, y, sample_weight = generate_classification_data(n_classes=2, distance=0.7) param_grid = OrderedDict({'reg_param': numpy.linspace(0, 1, 20)}) from itertools import cycle optimizers = cycle([ RegressionParameterOptimizer(param_grid=param_grid, n_evaluations=4, start_evaluations=2), SubgridParameterOptimizer(param_grid=param_grid, n_evaluations=4), RandomParameterOptimizer(param_grid=param_grid, n_evaluations=4), ]) for metric in [RocAuc(), OptimalAMS(), OptimalSignificance(), log_loss]: scorer = FoldingScorer(metric) clf = SklearnClassifier(QDA()) grid = GridOptimalSearchCV( estimator=clf, params_generator=next(optimizers), scorer=scorer, parallel_profile='threads-{}'.format(n_threads)) grid.fit(X, y) print(grid.params_generator.best_score_) print(grid.params_generator.best_params_) grid.params_generator.print_results()
def grid_tmva(score_function): grid_param = OrderedDict({"MaxDepth": [4, 5], "NTrees": [10, 20]}) generator = SubgridParameterOptimizer(grid_param) scorer = FoldingScorer(score_function) from rep.estimators import TMVAClassifier grid = GridOptimalSearchCV(TMVAClassifier(features=['column0', 'column1']), generator, scorer) cl = check_grid(grid, False, False, False) assert 1 <= len(cl.features) <= 3 params = cl.get_params() for key in grid_param: assert params[key] == grid.generator.best_params_[key]
def test_gridsearch_threads(n_threads=3): scorer = FoldingScorer(numpy.random.choice([OptimalAMS(), RocAuc()])) grid_param = OrderedDict({ "n_estimators": [10, 20], "learning_rate": [0.1, 0.05], 'features': [['column0', 'column1'], ['column0', 'column1', 'column2']] }) generator = RegressionParameterOptimizer(grid_param, n_evaluations=4) base = SklearnClassifier(clf=AdaBoostClassifier()) grid = GridOptimalSearchCV(base, generator, scorer, parallel_profile='threads-{}'.format(n_threads)) X, y, sample_weight = generate_classification_data() grid.fit(X, y, sample_weight=sample_weight)
def grid_sklearn(score_function): grid_param = OrderedDict({ "n_estimators": [10, 20], "learning_rate": [0.1, 0.05], 'features': [['column0', 'column1'], ['column0', 'column1', 'column2']] }) generator = RegressionParameterOptimizer(grid_param) scorer = FoldingScorer(score_function) grid = GridOptimalSearchCV(SklearnClassifier(clf=AdaBoostClassifier()), generator, scorer) cl = check_grid(grid, False, False, False) assert 1 <= len(cl.features) <= 3 params = cl.get_params() for key in grid_param: if key in params: assert params[key] == grid.generator.best_params_[key] else: assert params['clf__' + key] == grid.generator.best_params_[key]
def test_gridsearch_on_tmva(): metric = numpy.random.choice([OptimalAMS(), RocAuc()]) scorer = FoldingScorer(metric) grid_param = OrderedDict({"MaxDepth": [4, 5], "NTrees": [10, 20]}) generator = SubgridParameterOptimizer(grid_param) try: from rep.estimators import TMVAClassifier grid = GridOptimalSearchCV( TMVAClassifier(features=['column0', 'column1']), generator, scorer) classifier = check_grid(grid, False, False, False) # checking parameters assert len(classifier.features) == 2 params = classifier.get_params() for key in grid_param: assert params[key] == grid.generator.best_params_[key] except ImportError: pass
def test_gridsearch_on_tmva(): metric = numpy.random.choice([OptimalAMS(), RocAuc()]) scorer = FoldingScorer(metric) grid_param = OrderedDict({"MaxDepth": [4, 5], "NTrees": [10, 20]}) generator = SubgridParameterOptimizer(n_evaluations=5, param_grid=grid_param) try: from rep.estimators import TMVAClassifier base_tmva = TMVAClassifier( factory_options="Silent=True:V=False:DrawProgressBar=False", features=['column0', 'column1'], method='kBDT') grid = GridOptimalSearchCV(base_tmva, generator, scorer) classifier = check_grid(grid, False, False, False) # checking parameters assert len(classifier.features) == 2 params = classifier.get_params() for key in grid_param: assert params[key] == grid.generator.best_params_[key] except ImportError: pass
data = data.drop('g', axis=1) import numpy import numexpr import pandas from rep import utils from sklearn.ensemble import GradientBoostingClassifier from rep.report.metrics import RocAuc from rep.metaml import GridOptimalSearchCV, FoldingScorer, RandomParameterOptimizer from rep.estimators import SklearnClassifier, TMVAClassifier, XGBoostRegressor # define grid parameters grid_param = {} grid_param['learning_rate'] = [0.2, 0.1, 0.05, 0.02, 0.01] grid_param['max_depth'] = [2, 3, 4, 5] # use random hyperparameter optimization algorithm generator = RandomParameterOptimizer(grid_param) # define folding scorer scorer = FoldingScorer(RocAuc(), folds=3, fold_checks=3) estimator = SklearnClassifier(GradientBoostingClassifier(n_estimators=30)) #grid_finder = GridOptimalSearchCV(estimator, generator, scorer) #% time grid_finder.fit(data, labels) grid_finder = GridOptimalSearchCV(estimator, generator, scorer, parallel_profile="default") print "start grid search" grid_finder.fit(data, labels) grid_finder.params_generator.print_results() assert 10 == grid_finder.params_generator.n_evaluations, "oops"