def init_ui(data_muggler): """ Do the enaml import and set up of the UI Parameters ---------- data_muggler : replay.pipeline.DataMuggler """ with enaml.imports(): from pipeline_w2d import PipelineView histogram_model = HistogramModel() c_c_combo_fitter = MultiFitController(valid_models=valid_models) scalar_collection = ScalarCollection() scalar_collection.data_muggler = data_muggler scalar_collection.multi_fit_controller = c_c_combo_fitter cs_model = CrossSectionModel(data_muggler=data_muggler, histogram_model=histogram_model) view = PipelineView(histogram_model=histogram_model) histogram_model.cmap = cs_model.cmap # provide the pipeline view with its attributes view.scalar_collection=scalar_collection view.multi_fit_controller = c_c_combo_fitter view.cs_model = cs_model view.start_observation = start_observation view.stop_observation = stop_observation view.clear_data = clear_datamuggler view.reinit_data = init_datamuggler cmap = cs_model.cmap cs_model.cmap = 'gray' cs_model.cmap = cmap return view
def init_ui(data_muggler): """ Do the enaml import and set up of the UI Parameters ---------- data_muggler : replay.pipeline.DataMuggler """ with enaml.imports(): from pipeline_watching_PVs import PipelineView c_c_combo_fitter = MultiFitController(valid_models=valid_models) scalar_collection = ScalarCollection() scalar_collection.data_muggler = data_muggler scalar_collection.multi_fit_controller = c_c_combo_fitter view = PipelineView() # provide the pipeline view with its attributes view.scalar_collection=scalar_collection view.multi_fit_controller = c_c_combo_fitter return view
# p2 output -> dm2 p2.source_signal.connect(dm.append_data) app = QtApplication() with enaml.imports(): from pipeline import PipelineView img_seq = DmImgSequence(data_muggler=dm, data_name='img') cs_model = CrossSectionModel(data_muggler=dm, name='img', sliceable_data=img_seq) roi_model = RegionOfInterestModel(callback=roi_callback) from replay.model.fitting_model import FitController multi_fit_controller = MultiFitController(valid_models=valid_models) scalar_collection = ScalarCollection(data_muggler=dm, multi_fit_controller=multi_fit_controller) scalar_collection.scalar_models['count'].is_plotting = False scalar_collection.scalar_models['T'].is_plotting = False scalar_collection.scalar_models['x'].is_plotting = False scalar_collection.scalar_models['y'].is_plotting = False scalar_collection.fit_target = 'max' view = PipelineView(scalar_collection=scalar_collection, cs_model=cs_model, roi_model=roi_model, multi_fit_controller=multi_fit_controller) view.show() frame_source.start() app.start()