ch = args.ch cell = args.cell resolution_polarity = args.resolution resolution = args.resolution exp_factor = 4 percentile = args.percentile fork_speed = args.fspeed kon = 0.005 ndiff = args.ndiff nsim = args.nsim if args.signal == "peak": x, d3p = detect_peaks(start, end, ch, resolution_polarity=resolution_polarity, exp_factor=exp_factor, percentile=percentile, cell=cell, nanpolate=True) if args.correct: x, DNaseI = replication_data(cell, "DNaseI", chromosome=ch, start=start, end=end, resolution=resolution, raw=False) x, CNV = replication_data(cell, "CNV", chromosome=ch,
name_w = args.name + "_%i_%i_%i" % (ch, start, end) if args.signal in ["peak", "peakRFDonly"]: print("Percentile", percentile, args.recomp, args.gsmooth, args.dec, args.smoothpeak) rfd_only = False if args.signal == "peakRFDonly": rfd_only = True x, d3p = detect_peaks(start, end, ch, resolution_polarity=resolution_polarity, exp_factor=exp_factor, percentile=percentile, cell=cell, cellMRT=comp, cellRFD=cellseq, nanpolate=True, recomp=args.recomp, gsmooth=args.gsmooth, dec=args.dec, fsmooth=args.smoothpeak, expRFD=expRFD, rfd_only=rfd_only) if resolution != resolution_polarity: x, d3p0 = detect_peaks(start, end, ch, resolution_polarity=resolution, exp_factor=exp_factor, percentile=percentile,
248956422, 242193529, 198295559, 190214555, 181538259, 170805979, 159345973, 145138636, 138394717, 133797422, 135086622, 133275309, 114364328, 107043718, 101991189, 90338345, 83257441, 80373285, 58617616, 64444167, 46709983, 50818468 ] data = [] for chrom, length in enumerate(chromlength, 1): data.append( detect_peaks(0, length // 1000, chrom, resolution_polarity=resolution_polarity, exp_factor=exp_factor, fsmooth=args.smoothpeak, percentile=percentile, cell=cell, cellMRT=args.cellMRT, cellRFD=args.cellRFD, recomp=args.recomp, dec=args.dec)[1]) data = np.concatenate(data) data[data == 0] = np.nan data[~np.isnan(data)] = 1 pd.DataFrame({"signalValue": data}).to_csv("ARS.csv", index=False) with open(args.name, "wb") as f: pickle.dump(data, f)