datasetsnames = np.unique(df_beam.datasetname) results2plot = dict() for datname in datasetsnames: results2plot[datname] = dict() results2plot[datname]["beamsize"] = df_beam[df_beam.datasetname == datname].beam_width.to_numpy() results2plot[datname]["compression"] = df_beam[ df_beam.datasetname == datname].length_ratio.to_numpy() results2plot[datname]["wkl_sum"] = df_beam[df_beam.datasetname == datname].wkl_sum.to_numpy() fig, lgd = make_graph(results2plot, "beamsize", "compression", size_marker=6, color=tableau20, typeofplot="semilogx", separate_colour=1) plt.axvline(x=100, linestyle='--', linewidth=0.6, color='k') plt.xlabel("beam width") plt.ylabel("relative compression") save_path = os.path.join(folder_path, "beam_vs_compression.pdf") fig.savefig(save_path, bbox_extra_artists=(lgd, ), bbox_inches='tight') ############################################################################### # beamsize numeric targets ############################################################################### folder_load = os.path.join("results", "hyperparameter testing", "gaussian_beam_width_results", "summary.csv")
results2plot = dict() for datname in datasetsnames: results2plot[datname] = dict() results2plot[datname]["maxdepth"] = df[df.datasetname == datname].maxdepth.to_numpy() results2plot[datname]["compression"] = df[df.datasetname == datname].length_ratio.to_numpy() results2plot[datname]["time"] = df[df.datasetname == datname].runtime.to_numpy() results2plot[datname]["conditions"] = df[df.datasetname == datname].avg_items.to_numpy() fig, lgd = make_graph(results2plot, "maxdepth", "compression", size_marker=6, color=tableau20, typeofplot="plot", separate_colour=1) plt.axvline(x=5, linestyle='--', linewidth=0.6, color='k') plt.xlabel("maximum depth") plt.ylabel("relative compression") save_path = os.path.join(folder_path, "maxdepth_vs_compression.pdf") fig.savefig(save_path, bbox_extra_artists=(lgd, ), bbox_inches='tight') fig, lgd = make_graph(results2plot, "maxdepth", "time", size_marker=6, color=tableau20, typeofplot="semilogy",
df_ncut = pd.read_csv(folder_load, index_col=False) datasetsnames = np.unique(df_ncut.datasetname) results2plot = dict() for datname in datasetsnames: results2plot[datname] = dict() results2plot[datname]["ncutpoints"] = df_ncut[ df_ncut.datasetname == datname].n_cutpoints.to_numpy() results2plot[datname]["compression"] = df_ncut[ df_ncut.datasetname == datname].length_ratio.to_numpy() #results2plot[datname]["time"] = df_ncut[df_ncut.datasetname == datname].runtime.to_numpy() fig, lgd = make_graph(results2plot, "ncutpoints", "compression", size_marker=6, color=tableau20, typeofplot="plot", separate_colour=1) plt.axvline(x=5, linestyle='--', linewidth=0.6, color='k') plt.xlabel("number cutpoints") plt.ylabel("relative compression") save_path = os.path.join(folder_path, "ncutpoints_vs_compression.pdf") fig.savefig(save_path, bbox_extra_artists=(lgd, ), bbox_inches='tight') """ fig,lgd = make_graph(results2plot,"ncutpoints","time",size_marker = 6,color = tableau20,typeofplot ="semilogy",separate_colour =1) plt.axvline(x=5,linestyle= '--', linewidth=0.6, color='k') plt.xlabel("number cutpoints") plt.ylabel("rumtime (s)") save_path = os.path.join(folder_path,"ncutpoints_vs_time.pdf") fig.savefig(save_path, bbox_extra_artists=(lgd,), bbox_inches='tight')