def test_read_design_matrix(self): with TestAreaContext("python/enkf/export/design_matrix"): dumpDesignMatrix1("DesignMatrix.txt") dm = DesignMatrixReader.loadDesignMatrix("DesignMatrix.txt") self.assertEqual(dm["CORR_SEIS_HEIMDAL"][0], 0.8) self.assertEqual(dm["VOL_FRAC_HEIMDAL"][0], 0.08) self.assertEqual(dm["AZIM_IND_HEIMDAL"][0], 125) self.assertEqual(dm["VARIO_PARAL_HEIMDAL"][0], 1000) self.assertEqual(dm["VARIO_NORM_HEIMDAL"][0], 500) self.assertEqual(dm["VARIO_VERT_HEIMDAL"][0], 25) self.assertEqual(dm["SEIS_COND_HEIMDAL"][0], "ON") self.assertEqual(dm["CORR_SEIS_HEIMDAL"][1], 0.8) self.assertEqual(dm["VOL_FRAC_HEIMDAL"][1], 0.15) self.assertEqual(dm["AZIM_IND_HEIMDAL"][1], 125) self.assertEqual(dm["VARIO_PARAL_HEIMDAL"][1], 2000) self.assertEqual(dm["VARIO_NORM_HEIMDAL"][1], 1000) self.assertEqual(dm["VARIO_VERT_HEIMDAL"][1], 25) self.assertEqual(dm["SEIS_COND_HEIMDAL"][1], "ON") self.assertEqual(dm["CORR_SEIS_HEIMDAL"][2], 0.8) self.assertEqual(dm["VOL_FRAC_HEIMDAL"][2], 0.20) self.assertEqual(dm["AZIM_IND_HEIMDAL"][2], 125) self.assertEqual(dm["VARIO_PARAL_HEIMDAL"][2], 4000) self.assertEqual(dm["VARIO_NORM_HEIMDAL"][2], 2000) self.assertEqual(dm["VARIO_VERT_HEIMDAL"][2], 25) self.assertEqual(dm["SEIS_COND_HEIMDAL"][2], "ON")
def test_join(self): with ErtTestContext("python/enkf/export/export_join", self.config) as context: dumpDesignMatrix("DesignMatrix.txt") ert = context.getErt() summary_data = SummaryCollector.loadAllSummaryData(ert, "default_1") gen_kw_data = GenKwCollector.loadAllGenKwData(ert, "default_1") misfit = MisfitCollector.loadAllMisfitData(ert, "default_1") dm = DesignMatrixReader.loadDesignMatrix("DesignMatrix.txt") result = summary_data.join(gen_kw_data, how="inner") result = result.join(misfit, how="inner") result = result.join(dm, how="inner") first_date = "2010-01-10" last_date = "2015-06-23" self.assertFloatEqual( result["SNAKE_OIL_PARAM:OP1_OCTAVES"][0][first_date], 3.947766 ) self.assertFloatEqual( result["SNAKE_OIL_PARAM:OP1_OCTAVES"][24][first_date], 4.206698 ) self.assertFloatEqual( result["SNAKE_OIL_PARAM:OP1_OCTAVES"][24][last_date], 4.206698 ) self.assertFloatEqual(result["EXTRA_FLOAT_COLUMN"][0][first_date], 0.08) self.assertEqual(result["EXTRA_INT_COLUMN"][0][first_date], 125) self.assertEqual(result["EXTRA_STRING_COLUMN"][0][first_date], "ON") self.assertFloatEqual(result["EXTRA_FLOAT_COLUMN"][0][last_date], 0.08) self.assertEqual(result["EXTRA_INT_COLUMN"][0][last_date], 125) self.assertEqual(result["EXTRA_STRING_COLUMN"][0][last_date], "ON") self.assertFloatEqual(result["EXTRA_FLOAT_COLUMN"][1][last_date], 0.07) self.assertEqual(result["EXTRA_INT_COLUMN"][1][last_date], 225) self.assertEqual(result["EXTRA_STRING_COLUMN"][1][last_date], "OFF") self.assertFloatEqual(result["MISFIT:FOPR"][0][last_date], 457.491003) self.assertFloatEqual(result["MISFIT:FOPR"][24][last_date], 1630.774198) self.assertFloatEqual(result["MISFIT:TOTAL"][0][first_date], 468.469969) self.assertFloatEqual(result["MISFIT:TOTAL"][0][last_date], 468.469969) self.assertFloatEqual(result["MISFIT:TOTAL"][24][last_date], 1714.662370) with self.assertRaises(KeyError): realization_13 = result.loc[60] column_count = len(result.columns) self.assertEqual(result.dtypes[0], numpy.float64) self.assertEqual(result.dtypes[column_count - 1], numpy.object) self.assertEqual(result.dtypes[column_count - 2], numpy.int64)
def run(self, output_file, case_list=None, design_matrix_path=None, infer_iteration=True): cases = [] if case_list is not None: if case_list.strip() == "*": cases = self.getAllCaseList() else: cases = case_list.split(",") if case_list is None or len(cases) == 0: cases = [self.ert().getEnkfFsManager().getCurrentFileSystem().getCaseName()] if design_matrix_path is not None: if not os.path.exists(design_matrix_path): raise UserWarning("The design matrix file does not exists!") if not os.path.isfile(design_matrix_path): raise UserWarning("The design matrix is not a file!") data = pandas.DataFrame() for index, case in enumerate(cases): case = case.strip() if not self.ert().getEnkfFsManager().caseExists(case): raise UserWarning("The case '%s' does not exist!" % case) if not self.ert().getEnkfFsManager().caseHasData(case): raise UserWarning("The case '%s' does not have any data!" % case) if infer_iteration: iteration_number = self.inferIterationNumber(case) else: iteration_number = index case_data = GenKwCollector.loadAllGenKwData(self.ert(), case) custom_kw_data = CustomKWCollector.loadAllCustomKWData(self.ert(), case) if not custom_kw_data.empty: case_data = case_data.join(custom_kw_data, how='outer') if design_matrix_path is not None: design_matrix_data = DesignMatrixReader.loadDesignMatrix(design_matrix_path) if not design_matrix_data.empty: case_data = case_data.join(design_matrix_data, how='outer') misfit_data = MisfitCollector.loadAllMisfitData(self.ert(), case) if not misfit_data.empty: case_data = case_data.join(misfit_data, how='outer') summary_data = SummaryCollector.loadAllSummaryData(self.ert(), case) if not summary_data.empty: case_data = case_data.join(summary_data, how='outer') else: case_data["Date"] = None case_data.set_index(["Date"], append=True, inplace=True) case_data["Iteration"] = iteration_number case_data["Case"] = case case_data.set_index(["Case", "Iteration"], append=True, inplace=True) data = pandas.concat([data, case_data]) data = data.reorder_levels(["Realization", "Iteration", "Date", "Case"]) data.to_csv(output_file) export_info = "Exported %d rows and %d columns to %s." % (len(data.index), len(data.columns), output_file) return export_info
case) if infer_iteration: iteration_number = self.inferIterationNumber(case) else: iteration_number = index case_data = GenKwCollector.loadAllGenKwData(self.ert(), case) custom_kw_data = CustomKWCollector.loadAllCustomKWData( self.ert(), case) if not custom_kw_data.empty: case_data = case_data.join(custom_kw_data, how='outer') if design_matrix_path is not None: design_matrix_data = DesignMatrixReader.loadDesignMatrix( design_matrix_path) if not design_matrix_data.empty: case_data = case_data.join(design_matrix_data, how='outer') misfit_data = MisfitCollector.loadAllMisfitData(self.ert(), case) if not misfit_data.empty: case_data = case_data.join(misfit_data, how='outer') summary_data = SummaryCollector.loadAllSummaryData( self.ert(), case) if not summary_data.empty: case_data = case_data.join(summary_data, how='outer') else: case_data["Date"] = None case_data.set_index(["Date"], append=True, inplace=True)