def init_matrices(ens, mask, obs, rng): state_size = 2 report_step = 5 meas_data = MeasData(mask) meas_block = meas_data.addBlock("OBS", report_step, len(obs)) A = Matrix(state_size, mask.countEqual(True)) active_iens = 0 for iens, params in enumerate(ens): if mask[iens]: state = forward_model(params) meas_block[0, iens] = measure(state) A[0, active_iens] = params[0] A[1, active_iens] = params[1] active_iens += 1 S = meas_data.createS() obs_data = ObsData() obs_block = obs_data.addBlock("OBS", 1) for iobs, obs_value in enumerate(obs): obs_block[iobs] = obs_value R = obs_data.createR() dObs = obs_data.createDObs() E = obs_data.createE(rng, meas_data.getActiveEnsSize()) D = obs_data.createD(E, S) obs_data.scale(S, E=E, D=D, R=R, D_obs=dObs) return (A, S, E, D, R, dObs)
def calculatePrincipalComponent(self, fs, local_obsdata, truncation_or_ncomp=3): pc = Matrix(1, 1) pc_obs = Matrix(1, 1) singular_values = DoubleVector() state_map = fs.getStateMap() ens_mask = BoolVector(False, self.ert().getEnsembleSize()) state_map.selectMatching(ens_mask, RealizationStateEnum.STATE_HAS_DATA) active_list = ens_mask.createActiveList() if len(ens_mask) > 0: meas_data = MeasData(ens_mask) obs_data = ObsData() self.ert().getObservations().getObservationAndMeasureData( fs, local_obsdata, active_list, meas_data, obs_data) meas_data.deactivateZeroStdSamples(obs_data) active_size = len(obs_data) if active_size > 0: S = meas_data.createS() D_obs = obs_data.createDObs() truncation, ncomp = self.truncationOrNumberOfComponents( truncation_or_ncomp) obs_data.scale(S, D_obs=D_obs) EnkfLinalg.calculatePrincipalComponents( S, D_obs, truncation, ncomp, pc, pc_obs, singular_values) if self.__prior_singular_values is None: self.__prior_singular_values = singular_values else: for row in range(pc.rows()): factor = singular_values[ row] / self.__prior_singular_values[row] pc.scaleRow(row, factor) pc_obs.scaleRow(row, factor) return PcaPlotData(local_obsdata.getName(), pc, pc_obs, singular_values) return None
def test_create(self): ens_size = 10 ens_mask = BoolVector(default_value=True, initial_size=ens_size) data = MeasData(ens_mask) self.assertEqual(len(data), 0) self.assertTrue(isinstance(data, MeasData)) block1 = data.addBlock("OBS1", 10, 5) block2 = data.addBlock("OBS2", 27, 10) with self.assertRaises(TypeError): data[1.782] with self.assertRaises(KeyError): data["NO-this-does-not-exist"] with self.assertRaises(IndexError): data[2] last0 = data[-1] last1 = data[1] self.assertEqual(last0, last1) self.assertTrue("OBS1-10" in data) self.assertTrue("OBS2-27" in data) self.assertEqual(len(data), 2) self.assertTrue(isinstance(block1, MeasBlock)) self.assertTrue(isinstance(block2, MeasBlock)) self.assertEqual(block1.getObsSize(), 5) self.assertEqual(block2.getObsSize(), 10) l = [] for b in data: l.append(b) self.assertEqual(len(l), 2) self.assertEqual(l[0], block1) self.assertEqual(l[1], block2) with self.assertRaises(ValueError): S = data.createS() for iens in range(ens_size): block1[0, iens] = 5 block2[0, iens] = 10 block2[1, iens] = 15 self.assertEqual(3, data.activeObsSize()) S = data.createS() self.assertEqual(S.dims(), (3, ens_size)) for iens in range(ens_size): self.assertEqual(S[0, iens], 5) self.assertEqual(S[1, iens], 10) self.assertEqual(S[2, iens], 15) pfx = 'MeasData(len = ' self.assertEqual(pfx, repr(data)[:len(pfx)])