コード例 #1
0
validationOutputData = trainingOutputData


#Tune the reservoir
spectralRadius = 0.5
inputScaling = 0.5
reservoirScaling = 0.5
leakingRate = 0.3
size = 500
initialTransient = 50

#Train the reservoir with the optimal parameters
res1 = reservoir.Reservoir(size=size,
                         spectralRadius=spectralRadius,
                         inputScaling=inputScaling,
                         reservoirScaling=reservoirScaling,
                         leakingRate=leakingRate,
                         initialTransient=initialTransient,
                         inputData=trainingInputData,
                         outputData=trainingOutputData)

res1.trainReservoir()

# To predict the test data, predict training and valiadation data as a warm up
trainingPredictedOutputData = res1.predict(trainingInputData)


#Now, start predicting the future
xAxis = []
predictedOutput = []
lastDayIndex = rawData.shape[0] -1
lastDay = date(int(availableData[lastDayIndex, 0]), int(availableData[lastDayIndex, 1]), int(availableData[lastDayIndex, 2]))
コード例 #2
0
                                trainingOutputData=targetVectors,
                                validationInputData=featureVectors,
                                validationOutputData=targetVectors,
                                spectralRadiusBound=spectralRadiusBound,
                                inputScalingBound=inputScalingBound,
                                reservoirScalingBound=reservoirScalingBound,
                                leakingRateBound=leakingRateBound)
spectralRadiusOptimum, inputScalingOptimum, reservoirScalingOptimum, leakingRateOptimum, inputWeightOptimum, reservoirWeightOptimum = resTuner.getOptimalParameters(
)

#Train the reservoir with the optimal parameters
res = reservoir.Reservoir(size=size,
                          spectralRadius=spectralRadiusOptimum,
                          inputScaling=inputScalingOptimum,
                          reservoirScaling=reservoirScalingOptimum,
                          leakingRate=leakingRateOptimum,
                          initialTransient=initialTransient,
                          inputData=featureVectors,
                          outputData=targetVectors,
                          inputWeightRandom=inputWeightOptimum,
                          reservoirWeightRandom=reservoirWeightOptimum)

res.trainReservoir()

#Predict for the training data as a warmup
trainingPredictedOutputData = res.predict(featureVectors)

#Now, start predicted the future

nextDate = series.last_valid_index()
predicted = []
xAxis = []
コード例 #3
0
                                trainingOutputData=trainingOutputData,
                                validationInputData=validationInputData,
                                validationOutputData=validationOutputData,
                                spectralRadiusBound=spectralRadiusBound,
                                inputScalingBound=inputScalingBound,
                                reservoirScalingBound=reservoirScalingBound,
                                leakingRateBound=leakingRateBound)
spectralRadiusOptimum, inputScalingOptimum, reservoirScalingOptimum, leakingRateOptimum, inputWeightOptimum, reservoirWeightOptimum = resTuner.getOptimalParameters(
)

#Train the reservoir with the optimal parameters
res = reservoir.Reservoir(size=size,
                          spectralRadius=spectralRadiusOptimum,
                          inputScaling=inputScalingOptimum,
                          reservoirScaling=reservoirScalingOptimum,
                          leakingRate=leakingRateOptimum,
                          initialTransient=initialTransient,
                          inputData=trainingInputData,
                          outputData=trainingOutputData,
                          inputWeightRandom=inputWeightOptimum,
                          reservoirWeightRandom=reservoirWeightOptimum)

res.trainReservoir()

# To predict the test data, predict training and valiadation data as a warm up
trainingPredictedOutputData = res.predict(trainingInputData)

#Now, start predicting the future
xAxis = []
predictedOutput = []
lastDayIndex = rawData.shape[0] - 1
lastDay = date(int(availableData[lastDayIndex, 0]),
horizon = 1
tsp = ts.TimeSeriesProcessor(rawData, depth, horizon, 4)
processedData = tsp.getProcessedData()

inputData = np.hstack((np.ones((processedData.shape[0], 1)),
                       processedData[:processedData.shape[0], :depth]))
outputData = processedData[:processedData.shape[0], depth:depth + horizon]

# Train
inputWeightRandom = np.load("Outputs/inputWeight.npy")
reservoirWeightRandom = np.load("Outputs/reservoirWeight.npy")
res = reservoir.Reservoir(size=600,
                          spectralRadius=1.25,
                          inputScaling=0.50,
                          reservoirScaling=0.50,
                          leakingRate=0.20,
                          initialTransient=0,
                          inputData=inputData,
                          outputData=outputData,
                          inputWeightRandom=inputWeightRandom,
                          reservoirWeightRandom=reservoirWeightRandom)
res.trainReservoir()

#Predict for past
lastDayIndex = 0
lastDayValue = rawData[lastDayIndex, 4]

xAxisPast = []
testPredictedOutputDataPast = []
testActualOutputDataPast = []
numberOfDaysInPast = rawData.shape[0] - 1
for i in range(numberOfDaysInPast):