def test_make_recurrent_no_partitioning4(): ORDER_BY = "times" N_RECURRENT_SAMPLES = 5 df = sample_data2() arr, y = make_recurrent(df, N_RECURRENT_SAMPLES, ORDER_BY, verbose=True, price_column="val1", time_threshold=86400) check_results(arr, df, N_RECURRENT_SAMPLES)
def test_make_recurrent_partitioning4(): ORDER_BY = "times" PARTITION_BY = "day" N_RECURRENT_SAMPLES = 3 df = sample_data2() df[PARTITION_BY] = pd.to_datetime(df["times"]).dt.to_period("D") arr, y = make_recurrent(df, N_RECURRENT_SAMPLES, ORDER_BY, PARTITION_BY, verbose=True, price_column="val1", time_threshold=86400) check_results(arr, df, N_RECURRENT_SAMPLES, PARTITION_BY)
def main(): df = sample_data1() arr = make_recurrent(df, 3, "times", drop_order_by=False, drop_partition_by=False) print(df) print("***********************************************") print(arr)
def main(): df = sample_data1() df["month"] = pd.to_datetime(df["times"]).dt.to_period("M") arr = make_recurrent( df, 3, "times", partition_by="month", drop_order_by=False, drop_partition_by=False, ) print(df) print("***********************************************") print(arr) print(f"Output shape is {arr.shape}")