コード例 #1
0
def _update_samples_with_object_indices(
        database_class: DataBase, object_indices: list,
        is_queryable: bool, epoch: int) -> DataBase:
    """
    Runs database class update_samples methods with object indices

    Parameters
    ----------
    database_class
        An instance of DataBase class
    object_indices
        List of indexes identifying objects to be moved.
    is_queryable
        If True, consider queryable flag. Default is False.
    epoch
        Day since beginning of survey. Default is 20.
    """
    database_class.update_samples(
        object_indices, queryable=is_queryable, epoch=epoch)
    return database_class
コード例 #2
0
def learn_loop(nloops: int,
               strategy: str,
               path_to_features: str,
               output_metrics_file: str,
               output_queried_file: str,
               features_method: str = 'Bazin',
               classifier: str = 'RandomForest',
               training: str = 'original',
               batch: int = 1,
               survey: str = 'DES',
               nclass: int = 2,
               photo_class_thr: float = 0.5,
               photo_ids_to_file: bool = False,
               photo_ids_froot: str = ' ',
               classifier_bootstrap: bool = False,
               save_predictions: bool = False,
               sep_files=False,
               pred_dir: str = None,
               queryable: bool = False,
               metric_label: str = 'snpcc',
               save_alt_class: bool = False,
               SNANA_types: bool = False,
               metadata_fname: str = None,
               bar: bool = True,
               **kwargs):
    """
    Perform the active learning loop. All results are saved to file.

    Parameters
    ----------
    nloops: int
        Number of active learning loops to run.
    strategy: str
        Query strategy. Options are 'UncSampling', 'RandomSampling',
        'UncSamplingEntropy', 'UncSamplingLeastConfident', 'UncSamplingMargin',
        'QBDMI' and 'QBDEntropy'.
    path_to_features: str or dict
        Complete path to input features file.
        if dict, keywords should be 'train' and 'test',
        and values must contain the path for separate train
        and test sample files.
    output_metrics_file: str
        Full path to output file to store metric values of each loop.
    output_queried_file: str
        Full path to output file to store the queried sample.
    features_method: str (optional)
        Feature extraction method. Currently only 'Bazin' is implemented.
    classifier: str (optional)
        Machine Learning algorithm.
        Currently implemented options are 'RandomForest', 'GradientBoostedTrees',
        'K-NNclassifier','MLPclassifier','SVMclassifier' and 'NBclassifier'.
        Default is 'RandomForest'.
    sep_files: bool (optional)
        If True, consider train and test samples separately read
        from independent files. Default is False.
    batch: int (optional)
        Size of batch to be queried in each loop. Default is 1.
    classifier_bootstrap: bool (optional)
        Flag for bootstrapping on the classifier
        Must be true if using disagreement based strategy.
    metadata_fname: str (optional)
        Complete path to PLAsTiCC zenodo test metadata. Only used it
        SNANA_types == True. Default is None.
    metric_label: str (optional)
        Choice of metric.
        Currently only "snpcc", "cosmo" or "snpcc_cosmo" are accepted.
        Default is "snpcc".
    nclass: int (optional)
        Number of classes to consider in the classification
        Currently only nclass == 2 is implemented.
    photo_class_thr: float (optional)
        Threshold for photometric classification. Default is 0.5.
        Only used if photo_ids is True.
    photo_ids_to_file: bool (optional)
        If True, save photometric ids to file. Default is False.
    photo_ids_froot: str (optional)
        Output root of file name to store photo ids.
        Only used if photo_ids is True.
    pred_dir: str (optional)
        Output diretory to store prediction file for each loop.
        Only used if `save_predictions==True`.
    queryable: bool (optional)
        If True, check if randomly chosen object is queryable.
        Default is False.
    save_alt_class: bool (optional)
        If True, train the model and save classifications for alternative
        query label (this is necessary to calculate impact on cosmology).
        Default is False.
    save_predictions: bool (optional)
        If True, save classification predictions to file in each loop.
        Default is False.
    SNANA_types: bool (optional)
        If True, translate zenodo types to SNANA codes.
        Default is False.
    survey: str (optional)
        'DES' or 'LSST'. Default is 'DES'.
        Name of the survey which characterizes filter set.
    training: str or int (optional)
        Choice of initial training sample.
        If 'original': begin from the train sample flagged in the file
        If int: choose the required number of samples at random,
        ensuring that at least half are SN Ia
        Default is 'original'.
    bar: bool (optional)
        If True, display progress bar.     
    kwargs: extra parameters
        All keywords required by the classifier function.
    """
    if 'QBD' in strategy and not classifier_bootstrap:
        raise ValueError(
            'Bootstrap must be true when using disagreement strategy')

    # initiate object
    database_class = DataBase()
    logging.info('Loading features')
    database_class = load_features(database_class, path_to_features, survey,
                                   features_method, nclass, training,
                                   queryable, sep_files)

    logging.info('Running active learning loop')

    if bar:
        ensemble = progressbar.progressbar(range(nloops))
    else:
        ensemble = range(nloops)

    for iteration_step in ensemble:
        if not bar:
            print(iteration_step)

        database_class = run_classification(database_class, classifier,
                                            classifier_bootstrap, pred_dir,
                                            save_predictions, iteration_step,
                                            **kwargs)
        run_evaluation(database_class, metric_label)
        save_photo_ids(database_class, photo_ids_to_file, SNANA_types,
                       metadata_fname, photo_class_thr, iteration_step,
                       photo_ids_froot, '.dat')
        indices_to_query = run_make_query(database_class, strategy, batch,
                                          queryable)
        if save_alt_class and batch == 1:
            database_class_alternative = copy.deepcopy(database_class)
            database_class_alternative = update_alternative_label(
                database_class_alternative, indices_to_query, iteration_step,
                classifier, pred_dir, save_predictions, metric_label,
                SNANA_types, photo_ids_to_file, metadata_fname,
                photo_class_thr, photo_ids_froot, **kwargs)
            _save_metrics_and_queried_samples(database_class_alternative,
                                              output_metrics_file,
                                              output_queried_file,
                                              iteration_step, batch, False,
                                              '_alt_label.dat')

        elif save_alt_class and batch > 1:
            raise ValueError('Alternative label only works with batch=1!')

        database_class.update_samples(indices_to_query,
                                      epoch=iteration_step,
                                      queryable=queryable,
                                      alternative_label=False)
        _save_metrics_and_queried_samples(database_class, output_metrics_file,
                                          output_queried_file, iteration_step,
                                          batch, False)
    return database_class
コード例 #3
0
def update_alternative_label(
        database_class_alternative: DataBase, indices_to_query: list,
        iteration_step: int, classifier: str, pred_dir: str,
        is_save_prediction: bool, metric_label: str, is_save_snana_types: bool,
        is_save_photoids_to_file: bool, meta_data_fname: str,
        photo_class_threshold: float, photo_ids_froot: str, **kwargs: dict):
    """
    Function to update active learning training with alternative label

    Parameters
    ----------
    database_class_alternative
        An instance of DataBase class for alternative label
    indices_to_query
        List of indexes identifying objects to be moved.
    iteration_step
        active learning iteration number
    classifier
        Machine Learning algorithm.
        Currently implemented options are 'RandomForest', 'GradientBoostedTrees',
        'K-NNclassifier','MLPclassifier','SVMclassifier' and 'NBclassifier'.
        Default is 'RandomForest'.
    pred_dir
        Output diretory to store prediction file for each loop.
        Only used if `save_predictions==True`.
    is_save_prediction
        if predictions should be saved
    metric_label
        Choice of metric.
        Currently only "snpcc", "cosmo" or "snpcc_cosmo" are accepted.
        Default is "snpcc".
    is_save_snana_types
        if True, translate type to SNANA codes and
        add column with original values. Default is False.
    is_save_photoids_to_file
        If true, populate the photo_Ia_list attribute. Otherwise
        write to file. Default is False.
    meta_data_fname
        Full path to PLAsTiCC zenodo test metadata file.
    photo_class_threshold
         Probability threshold above which an object is considered Ia.
    photo_ids_froot
        Output root of file name to store photo ids.
        Only used if photo_ids is True.
    kwargs
        additional arguments
    """
    database_class_alternative.update_samples(indices_to_query,
                                              epoch=iteration_step,
                                              alternative_label=True)

    database_class_alternative = run_classification(database_class_alternative,
                                                    classifier, False,
                                                    pred_dir,
                                                    is_save_prediction,
                                                    iteration_step, **kwargs)

    run_evaluation(database_class_alternative, metric_label)

    save_photo_ids(database_class_alternative, is_save_photoids_to_file,
                   is_save_snana_types, meta_data_fname, photo_class_threshold,
                   iteration_step, photo_ids_froot, '_alt_label.dat')

    return database_class_alternative
コード例 #4
0
def learn_loop(nloops: int, strategy: str, path_to_features: str,
               output_diag_file: str, output_queried_file: str,
               features_method='Bazin', classifier='RandomForest',
               training='original', batch=1, screen=True, survey='DES',
               perc=0.1, nclass=2):
    """Perform the active learning loop. All results are saved to file.

    Parameters
    ----------
    nloops: int
        Number of active learning loops to run.
    strategy: str
        Query strategy. Options are 'UncSampling' and 'RandomSampling'.
    path_to_features: str or dict
        Complete path to input features file.
        if dict, keywords should be 'train' and 'test', 
        and values must contain the path for separate train 
        and test sample files.
    output_diag_file: str
        Full path to output file to store diagnostics of each loop.
    output_queried_file: str
        Full path to output file to store the queried sample.
    features_method: str (optional)
        Feature extraction method. Currently only 'Bazin' is implemented.
    classifier: str (optional)
        Machine Learning algorithm.
        Currently only 'RandomForest' is implemented.
    training: str or int (optional)
        Choice of initial training sample.
        If 'original': begin from the train sample flagged in the file
        If int: choose the required number of samples at random,
        ensuring that at least half are SN Ia
        Default is 'original'.
    batch: int (optional)
        Size of batch to be queried in each loop. Default is 1.
    screen: bool (optional)
        If True, print on screen number of light curves processed.
    survey: str (optional)
        'DES' or 'LSST'. Default is 'DES'.
        Name of the survey which characterizes filter set.
    perc: float in [0,1] (optioal)
        Percentile chosen to identify the new query. 
        Only used for PercentileSampling. 
        Default is 0.1.
    nclass: int (optional)
        Number of classes to consider in the classification
        Currently only nclass == 2 is implemented.    
    """

    ## This module will need to be expanded for RESSPECT

    # initiate object
    data = DataBase()

    # load features
    if isinstance(path_to_features, str):
        data.load_features(path_to_features, method=features_method,
                           screen=screen, survey=survey)

        # separate training and test samples
        data.build_samples(initial_training=training, nclass=nclass)

    else:
        data.load_features(path_to_features['train'], method=features_method,
                           screen=screen, survey=survey, sample='train')
        data.load_features(path_to_features['test'], method=features_method,
                           screen=screen, survey=survey, sample='test')

        data.build_samples(initial_training=training, nclass=nclass,
                           screen=screen, sep_files=True)
        
    for loop in range(nloops):

        if screen:
            print('Processing... ', loop)

        # classify
        data.classify(method=classifier)

        # calculate metrics
        data.evaluate_classification()

        # choose object to query
        indx = data.make_query(strategy=strategy, batch=batch, perc=perc)

        # update training and test samples
        data.update_samples(indx, loop=loop)

        # save diagnostics for current state
        data.save_metrics(loop=loop, output_metrics_file=output_diag_file,
                          batch=batch, epoch=loop)

        # save query sample to file
        data.save_queried_sample(output_queried_file, loop=loop,
                                 full_sample=False)
コード例 #5
0
def time_domain_loop(days: list,  output_diag_file: str,
                     output_queried_file: str,
                     path_to_features_dir: str, strategy: str,
                     batch=1, canonical = False,  classifier='RandomForest',
                     features_method='Bazin', path_to_canonical="",
                     path_to_full_lc_features="",
                     screen=True, training='original'):
    """Perform the active learning loop. All results are saved to file.

    Parameters
    ----------
    days: list
        List of 2 elements. First and last day of observations since the
        beginning of the survey.
    output_diag_file: str
        Full path to output file to store diagnostics of each loop.
    output_queried_file: str
        Full path to output file to store the queried sample.
    path_to_features_dir: str
        Complete path to directory holding features files for all days.
    strategy: str
        Query strategy. Options are 'UncSampling' and 'RandomSampling'.
    batch: int (optional)
        Size of batch to be queried in each loop. Default is 1.
    canonical: bool (optional)
        If True, restrict the search to the canonical sample.
    classifier: str (optional)
        Machine Learning algorithm.
        Currently only 'RandomForest' is implemented.
    features_method: str (optional)
        Feature extraction method. Currently only 'Bazin' is implemented.
    path_to_canonical: str (optional)
        Path to canonical sample features files.
        It is only used if "strategy==canonical".
    path_to_full_lc_features: str (optional)
        Path to full light curve features file.
        Only used if training is a number.
    screen: bool (optional)
        If True, print on screen number of light curves processed.
    training: str or int (optional)
        Choice of initial training sample.
        If 'original': begin from the train sample flagged in the file
        If int: choose the required number of samples at random,
        ensuring that at least half are SN Ia
        Default is 'original'.

    """

    ## This will need to change for RESSPECT

    # initiate object
    data = DataBase()

    # load features for the first day
    path_to_features = path_to_features_dir + 'day_' + str(int(days[0])) + '.dat'
    data.load_features(path_to_features, method=features_method,
                       screen=screen)

    # change training
    if training == 'original':
        data.build_samples(initial_training='original')
        full_lc_features = get_original_training(path_to_features=path_to_full_lc_features)
        data.train_metadata = full_lc_features.train_metadata
        data.train_labels = full_lc_features.train_labels
        data.train_features = full_lc_features.train_features

    else:
        data.build_samples(initial_training=int(training))

    # get list of canonical ids
    if canonical:
        canonical = DataBase()
        canonical.load_features(path_to_file=path_to_canonical)
        data.queryable_ids = canonical.queryable_ids


    for night in range(int(days[0]), int(days[-1]) - 1):

        if screen:
            print('Processing night: ', night)

        # cont loop
        loop = night - int(days[0])

        # classify
        data.classify(method=classifier)

        # calculate metrics
        data.evaluate_classification()

        # choose object to query
        indx = data.make_query(strategy=strategy, batch=batch)

        # update training and test samples
        data.update_samples(indx, loop=loop)

        # save diagnostics for current state
        data.save_metrics(loop=loop, output_metrics_file=output_diag_file,
                          batch=batch, epoch=night)

        # save query sample to file
        data.save_queried_sample(output_queried_file, loop=loop,
                                 full_sample=False)

        # load features for next day
        path_to_features2 = path_to_features_dir + 'day_' + str(night + 1) + '.dat'

        data_tomorrow = DataBase()
        data_tomorrow.load_features(path_to_features2, method=features_method,
                                    screen=False)

        # identify objects in the new day which must be in training
        train_flag = np.array([item in data.train_metadata['id'].values 
                              for item in data_tomorrow.metadata['id'].values])
   
        # use new data        
        data.train_metadata = data_tomorrow.metadata[train_flag]
        data.train_features = data_tomorrow.features.values[train_flag]
        data.test_metadata = data_tomorrow.metadata[~train_flag]
        data.test_features = data_tomorrow.features.values[~train_flag]

        # new labels
        data.train_labels = np.array([int(item  == 'Ia') for item in 
                                     data.train_metadata['type'].values])
        data.test_labels = np.array([int(item == 'Ia') for item in 
                                    data.test_metadata['type'].values])

        if strategy == 'canonical':
            data.queryable_ids = canonical.queryable_ids

        if  queryable:
            queryable_flag = data_tomorrow.metadata['queryable'].values
            queryable_test_flag = np.logical_and(~train_flag, queryable_flag)
            data.queryable_ids = data_tomorrow.metadata['id'].values[queryable_test_flag]
        else:
            data.queryable_ids = data_tomorrow.metadata['id'].values[~train_flag]

        if screen:
            print('Training set size: ', data.train_metadata.shape[0])
            print('Test set size: ', data.test_metadata.shape[0])