def gather_weight_data(wtype): # get the results results = {} # maps |V| to ResultAccumulator ds = DataSet.read_from_file(WeightResult, WeightResult.get_path_to(wtype)) for data in ds.dataset.values(): result = results.get(data.input().num_verts) if result is None: result = ResultAccumulator(data.mst_weight) results[data.input().num_verts] = result else: result.add_data(data.mst_weight) try: # open a file to output to fh = open(DATA_PATH + wtype + '.dat', 'w') # compute relevant stats and output them print >> fh, '#|V|\tLower\tAverage\tUpper (Lower/Upper from 99% CI)' keys = results.keys() keys.sort() for num_verts in keys: r = results[num_verts] r.compute_stats() if len(r.values) > 1: print >> fh, '%u\t%.3f\t%.3f\t%.3f\t%u' % ( num_verts, r.lower99, r.mean, r.upper99, len(r.values)) fh.close() return 0 except IOError, e: print sys.stderr, "failed to write file: " + str(e) return -1
def gather_weight_data(wtype): # get the results results = {} # maps |V| to ResultAccumulator ds = DataSet.read_from_file(WeightResult, WeightResult.get_path_to(wtype)) for data in ds.dataset.values(): result = results.get(data.input().num_verts) if result is None: result = ResultAccumulator(data.mst_weight) results[data.input().num_verts] = result else: result.add_data(data.mst_weight) try: # open a file to output to fh = open(DATA_PATH + wtype + '.dat', 'w') # compute relevant stats and output them print >> fh, '#|V|\tLower\tAverage\tUpper (Lower/Upper from 99% CI)' keys = results.keys() keys.sort() for num_verts in keys: r = results[num_verts] r.compute_stats() if len(r.values) > 1: print >> fh, '%u\t%.3f\t%.3f\t%.3f\t%u' % (num_verts, r.lower99, r.mean, r.upper99, len(r.values)) fh.close() return 0 except IOError, e: print sys.stderr, "failed to write file: " + str(e) return -1
def gather_perf_data(alg, rev, index, latest): """Gathers performance data for a single revision of an algorithm""" print 'gathering perf data for %s (rev=%s index=%u latest=%s)' % (alg, rev, index, str(latest)) # get the results results = {} # maps (|V|, |E|) to ResultAccumulator ds = DataSet.read_from_file(PerfResult, PerfResult.get_path_to(rev)) for data in ds.dataset.values(): key = (data.input().num_verts, data.input().num_edges) result = results.get(key) if result is None: result = ResultAccumulator(data.time_sec) result.defaultCI = DEFAULT_CI results[key] = result else: result.add_data(data.time_sec) # put the results in order keys_density = results.keys() keys_density.sort(density_compare) keys_pom = results.keys() keys_pom.sort(pom_compare) keys = {} keys['density'] = keys_density keys['pom'] = keys_pom # compute stats for all the results for num_verts in results.keys(): results[num_verts].compute_stats() # generate dat files for each x-axis cross important vertex counts for xaxis in keys: if xaxis == 'pom': computex = lambda v, e : get_percent_of_max(v, e) elif xaxis == 'density': computex = lambda v, e : get_density(v, e) else: print >> sys.stderr, "unexpected x-axis value: " + str(xaxis) sys.exit(-1) header_txt = '#|V|\t|E|\t' + xaxis + '\tLower\tAverage\tUpper\t#Runs (Lower/Upper from ' + str(DEFAULT_CI) + '% CI)' for vip in IMPORTANT_VERTS: # open a file to output to dat = get_output_dat_name(xaxis, alg, rev, index, vip) print 'creating ' + dat if latest: latest_fn = make_latest(xaxis, alg, rev, index, vip) try: fh = open(dat, 'w') # compute relevant stats and output them print >> fh, header_txt count = 0 for (v, e) in keys[xaxis]: if vip=='all' or vip==v: count += 1 r = results[(v, e)] x = computex(v, e) print >> fh, '%u\t%u\t%.6f\t%.3f\t%.3f\t%.3f\t%u' % (v, e, x, r.lower99, r.mean, r.upper99, len(r.values)) fh.close() # don't create empty files if count == 0: quiet_remove(dat) if latest: quiet_remove(latest_fn) except IOError, e: print sys.stderr, "failed to write file: " + str(e) return -1