def predict(self, data): o = Output(data) x = self.transform.transform(data.x) y = x.dot(self.w) + self.b o.fu = y o.y = y return o
def predict(self, data): o = Output(data) #W = pairwise.rbf_kernel(data.x,self.x,self.sigma) x = data.x if self.use_stacking: x = self.get_stacking_x(data) x = self.transform.transform(x) if self.method == MixedFeatureGuidanceMethod.METHOD_LASSO: o.y = self.learner_lasso.predict(x) o.fu = o.y else: o.y = x.dot(self.w) + self.b o.fu = o.y o.w = self.w o.true_w = self.true_w return o
def predict(self, data): o = Output(data) #W = pairwise.rbf_kernel(data.x,self.x,self.sigma) x = data.x if self.use_stacking: x = self.get_stacking_x(data) x = self.transform.transform(x) o.y = x.dot(self.w) + self.b o.fu = o.y o.w = self.w o.true_w = self.true_w return o
def predict(self, data): o = Output(data) x = data.x if self.transform is not None: x = self.transform.transform(x) y = x.dot(self.w) + self.b # y = np.round(y) # y[y >= .5] = 1 # y[y < .5] = 0 y = np.sign(y) o.y = y o.fu = y if self.label_transform is not None: o.true_y = self.label_transform.transform(o.true_y) if not self.running_cv: is_correct = o.y == o.true_y mean_train = is_correct[o.is_train].mean() mean_test = is_correct[o.is_test].mean() mean_train_labeled = is_correct[data.is_train & data.is_labeled].mean() pass return o
def predict(self, data): o = Output(data) x = data.x if self.transform is not None: x = self.transform.transform(x) y = x.dot(self.w) + self.b #y = np.round(y) #y[y >= .5] = 1 #y[y < .5] = 0 y = np.sign(y) o.y = y o.fu = y if self.label_transform is not None: o.true_y = self.label_transform.transform(o.true_y) if not self.running_cv: is_correct = (o.y == o.true_y) mean_train = is_correct[o.is_train].mean() mean_test = is_correct[o.is_test].mean() mean_train_labeled = is_correct[data.is_train & data.is_labeled].mean() pass return o