def __init__(self, trained_model, network="mobile0.25", cpu=False, origin_size=True, confidence_threshold=0.02, nms_threshold=0.4): torch.set_grad_enabled(False) self.origin_size = origin_size self.confidence_threshold = confidence_threshold self.nms_threshold = nms_threshold self.cfg = None if network == "mobile0.25": self.cfg = cfg_mnet elif network == "resnet50": self.cfg = cfg_re50 # net and model self.net = RetinaFace(cfg=self.cfg, phase='test') self.net = self.load_model(self.net, trained_model, cpu) self.net.eval() print('Finished loading model!') print(self.net) cudnn.benchmark = True self.device = torch.device("cpu" if cpu else "cuda") self.net = self.net.to(self.device) self._t = {'forward_pass': Timer(), 'misc': Timer()}
pretrained_dict = remove_prefix(pretrained_dict, 'module.') check_keys(model, pretrained_dict) model.load_state_dict(pretrained_dict, strict=False) return model if __name__ == '__main__': torch.set_grad_enabled(False) cfg = None if args.network == "mobile0.25": cfg = cfg_mnet elif args.network == "resnet50": cfg = cfg_re50 # net and model net = RetinaFace(cfg=cfg, phase='test') net = load_model(net, args.trained_model, args.cpu) net.eval() print('Finished loading model!') print(net) cudnn.benchmark = True device = torch.device("cpu" if args.cpu else "cuda") net = net.to(device) # testing dataset testset_folder = args.dataset_folder testset_list = args.dataset_folder[:-7] + "wider_val.txt" with open(testset_list, 'r') as fr: test_dataset = fr.read().split() num_images = len(test_dataset)
num_classes = 2 img_dim = cfg['image_size'] num_gpu = cfg['ngpu'] batch_size = cfg['batch_size'] max_epoch = cfg['epoch'] gpu_train = cfg['gpu_train'] num_workers = args.num_workers momentum = args.momentum weight_decay = args.weight_decay initial_lr = args.lr gamma = args.gamma training_dataset = args.training_dataset save_folder = args.save_folder net = RetinaFace(cfg=cfg) print("Printing net...") print(net) if args.resume_net is not None: print('Loading resume network...') state_dict = torch.load(args.resume_net) # create new OrderedDict that does not contain `module.` from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): head = k[:7] if head == 'module.': name = k[7:] # remove `module.` else: name = k
class RetinaFaceNet: def __init__(self, trained_model, network="mobile0.25", cpu=False, origin_size=True, confidence_threshold=0.02, nms_threshold=0.4): torch.set_grad_enabled(False) self.origin_size = origin_size self.confidence_threshold = confidence_threshold self.nms_threshold = nms_threshold self.cfg = None if network == "mobile0.25": self.cfg = cfg_mnet elif network == "resnet50": self.cfg = cfg_re50 # net and model self.net = RetinaFace(cfg=self.cfg, phase='test') self.net = self.load_model(self.net, trained_model, cpu) self.net.eval() print('Finished loading model!') print(self.net) cudnn.benchmark = True self.device = torch.device("cpu" if cpu else "cuda") self.net = self.net.to(self.device) self._t = {'forward_pass': Timer(), 'misc': Timer()} # testing begin def check_keys(self, model, pretrained_state_dict): ckpt_keys = set(pretrained_state_dict.keys()) model_keys = set(model.state_dict().keys()) used_pretrained_keys = model_keys & ckpt_keys unused_pretrained_keys = ckpt_keys - model_keys missing_keys = model_keys - ckpt_keys print('Missing keys:{}'.format(len(missing_keys))) print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys))) print('Used keys:{}'.format(len(used_pretrained_keys))) assert len( used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint' return True def remove_prefix(self, state_dict, prefix): ''' Old style model is stored with all names of parameters sharing common prefix 'module.' ''' print('remove prefix \'{}\''.format(prefix)) f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x return {f(key): value for key, value in state_dict.items()} def load_model(self, model, pretrained_path, load_to_cpu): print('Loading pretrained model from {}'.format(pretrained_path)) if load_to_cpu: pretrained_dict = torch.load( pretrained_path, map_location=lambda storage, loc: storage) else: device = torch.cuda.current_device() pretrained_dict = torch.load( pretrained_path, map_location=lambda storage, loc: storage.cuda(device)) if "state_dict" in pretrained_dict.keys(): pretrained_dict = self.remove_prefix(pretrained_dict['state_dict'], 'module.') else: pretrained_dict = self.remove_prefix(pretrained_dict, 'module.') self.check_keys(model, pretrained_dict) model.load_state_dict(pretrained_dict, strict=False) return model def detect(self, img, *_): # testing scale img = img.astype(np.float32) target_size = 1600 max_size = 2150 im_shape = img.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) resize = float(target_size) / float(im_size_min) # prevent bigger axis from being more than max_size: if np.round(resize * im_size_max) > max_size: resize = float(max_size) / float(im_size_max) if self.origin_size: resize = 1 if resize != 1: img = cv2.resize(img, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR) im_height, im_width, _ = img.shape scale = torch.Tensor( [img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) img -= (104, 117, 123) img = img.transpose(2, 0, 1) img = torch.from_numpy(img).unsqueeze(0) img = img.to(self.device) scale = scale.to(self.device) self._t['forward_pass'].tic() loc, conf, landms = self.net(img) # forward pass self._t['forward_pass'].toc() self._t['misc'].tic() priorbox = PriorBox(self.cfg, image_size=(im_height, im_width)) priors = priorbox.forward() priors = priors.to(self.device) prior_data = priors.data boxes = decode(loc.data.squeeze(0), prior_data, self.cfg['variance']) boxes = boxes * scale / resize boxes = boxes.cpu().numpy() scores = conf.squeeze(0).data.cpu().numpy()[:, 1] landms = decode_landm(landms.data.squeeze(0), prior_data, self.cfg['variance']) scale1 = torch.Tensor([ img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2] ]) scale1 = scale1.to(self.device) landms = landms * scale1 / resize landms = landms.cpu().numpy() # ignore low scores inds = np.where(scores > self.confidence_threshold)[0] boxes = boxes[inds] landms = landms[inds] scores = scores[inds] # keep top-K before NMS order = scores.argsort()[::-1] # order = scores.argsort()[::-1][:args.top_k] boxes = boxes[order] landms = landms[order] scores = scores[order] # do NMS dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) keep = py_cpu_nms(dets, self.nms_threshold) # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu) dets = dets[keep, :] landms = landms[keep] # keep top-K faster NMS # dets = dets[:args.keep_top_k, :] # landms = landms[:args.keep_top_k, :] #dets = np.concatenate((dets, landms), axis=1) self._t['misc'].toc() return dets