コード例 #1
0
def delete_step():
    reaction = request.form['reaction']
    task_id = request.form['task_id']

    data = json.loads(current_app.redis.get(task_id))
    graph_dict = json.loads(data['graph_dict'])
    attr_dict = json.loads(data['attr_dict'])
    target_smiles = data['target_smiles']
    network_options = json.loads(data['network_options'])

    graph = nx.from_dict_of_lists(graph_dict, create_using=nx.DiGraph)
    network = Network(graph=graph,
                      target_smiles=target_smiles,
                      print_log=not current_app.config['PRODUCTION'])
    network.update_settings(network_options)
    network.add_attributes(attr_dict)

    to_delete = network.delete_reaction_node(reaction)
    nodes = []
    edges = []

    data['graph_dict'] = json.dumps(nx.to_dict_of_lists(network.graph))
    data['attr_dict'] = json.dumps(network.attributes_dict())
    nodes = add_new(data['nodes'], nodes)
    edges = add_new(data['edges'], edges)
    nodes, edges = delete_nodes_and_edges(to_delete, nodes, edges)
    data['nodes'] = nodes
    data['edges'] = edges

    current_app.redis.mset({task_id: json.dumps(data)})
    time_to_expire = 15 * 60  # 15 mins * 60 seconds
    current_app.redis.expire(task_id, time_to_expire)

    result = {'to_delete': to_delete}
    return jsonify(result=result)
コード例 #2
0
def change_reaction_options():
    task_id = request.form['task_id']

    data = json.loads(current_app.redis.get(task_id))
    graph_dict = json.loads(data['graph_dict'])
    attr_dict = json.loads(data['attr_dict'])
    target_smiles = data['target_smiles']
    network_options = json.loads(data['network_options'])

    graph = nx.from_dict_of_lists(graph_dict, create_using=nx.DiGraph)
    network = Network(graph=graph, target_smiles=target_smiles)
    network.update_settings(network_options)
    network.add_attributes(attr_dict)
    network.update_settings(
        {'max_reactions': int(request.form['max_reactions'])})
    """
    if len(retrobiocat.retrorules_diameters) != 0:
        network.settings['rr_min_diameter'] = int(request.form['rr_min_diameter'])
        network.settings['rr_min_products'] = int(request.form['rr_min_products'])
        network.settings['rr_max_reactions'] =  int(request.form['rr_max_reactions'])
    """

    data['network_options'] = json.dumps(network.settings)
    current_app.redis.mset({task_id: json.dumps(data)})
    time_to_expire = 15 * 60  #15 mins * 60 seconds
    current_app.redis.expire(task_id, time_to_expire)

    result = {'network_options': json.dumps(network.settings)}

    return jsonify(result=result)
コード例 #3
0
def change_network_options():
    reaction_colours = request.form['reaction_colours']
    edge_colours = request.form['edge_colours']
    task_id = request.form['task_id']

    data = json.loads(current_app.redis.get(task_id))
    graph_dict = json.loads(data['graph_dict'])
    attr_dict = json.loads(data['attr_dict'])
    target_smiles = data['target_smiles']
    network_options = json.loads(data['network_options'])

    graph = nx.from_dict_of_lists(graph_dict, create_using=nx.DiGraph)
    network = Network(graph=graph, target_smiles=target_smiles)
    network.update_settings(network_options)
    network.add_attributes(attr_dict)

    network.settings['colour_reactions'] = reaction_colours
    network.settings["colour_arrows"] = edge_colours

    nodes, edges = network.get_visjs_nodes_and_edges()

    data['nodes'] = add_new(data['nodes'], nodes)
    data['edges'] = add_new(data['edges'], edges)
    data['network_options'] = json.dumps(network.settings)

    current_app.redis.mset({task_id: json.dumps(data)})
    time_to_expire = 15 * 60  #15 mins * 60 seconds
    current_app.redis.expire(task_id, time_to_expire)

    result = {
        'nodes': nodes,
        'edges': edges,
    }

    return jsonify(result=result)
コード例 #4
0
def package_visjs_pathways(task_id, max_vis=100):
    network_data = json.loads(current_app.redis.get(task_id + '__network'))
    graph = nx.from_dict_of_lists(json.loads(network_data['graph_dict']),
                                  create_using=nx.DiGraph)
    network = Network(graph=graph,
                      target_smiles=network_data['target_smiles'],
                      print_log=not current_app.config['PRODUCTION'])
    network.update_settings(json.loads(network_data['network_options']))
    network.add_attributes(json.loads(network_data['attr_dict']))

    evaluated_pathways = json.loads(
        current_app.redis.get(f"{task_id}__evaluated_pathways"))

    for i, pathway_varients in enumerate(evaluated_pathways):
        if i > max_vis:
            break
        pathway_vis_js_data = []
        max_var = len(pathway_varients)
        for nodes in pathway_varients:
            pathway = Pathway(nodes, network, calc_scores=False)
            nodes, edges = pathway.get_visjs_nodes_and_edges()
            pathway_vis_js_data.append((nodes, edges, max_var))
        current_app.redis.mset(
            {f"{task_id}__{i+1}": json.dumps(pathway_vis_js_data)})
        current_app.redis.expire(f"{task_id}__{i+1}", 60 * 60)
コード例 #5
0
def aizynth_step():
    clicked_node = request.form['smiles']
    x = request.form['x']
    y = request.form['y']
    task_id = request.form['task_id']
    max_reactions = request.form['max_reactions']
    aizynth_reaction_mode = request.form['aizynth_reaction_mode']

    data = json.loads(current_app.redis.get(task_id))
    graph_dict = json.loads(data['graph_dict'])
    attr_dict = json.loads(data['attr_dict'])
    target_smiles = data['target_smiles']
    network_options = json.loads(data['network_options'])

    graph = nx.from_dict_of_lists(graph_dict, create_using=nx.DiGraph)
    network = Network(graph=graph,
                      target_smiles=target_smiles,
                      print_log=not current_app.config['PRODUCTION'])
    network.update_settings(network_options)
    network.add_attributes(attr_dict)
    network.update_settings({
        'max_reactions': int(max_reactions),
        'aizynth_reaction_mode': aizynth_reaction_mode
    })

    new_substrate_nodes, new_reaction_nodes = network.add_chemical_step(
        clicked_node)

    all_new_nodes = [clicked_node] + new_substrate_nodes + new_reaction_nodes
    subgraph = network.graph.subgraph(all_new_nodes)

    nodes, edges = network.get_visjs_nodes_and_edges(graph=subgraph)

    for i, node in enumerate(nodes):
        nodes[i].update({'x': x, 'y': y})

    result = {'nodes': nodes, 'edges': edges}

    data['graph_dict'] = json.dumps(nx.to_dict_of_lists(network.graph))
    data['attr_dict'] = json.dumps(network.attributes_dict())
    nodes = add_new(data['nodes'], nodes)
    edges = add_new(data['edges'], edges)
    nodes, edges = delete_nodes_and_edges([], nodes, edges)
    data['nodes'] = nodes
    data['edges'] = edges

    current_app.redis.mset({task_id: json.dumps(data)})
    time_to_expire = 15 * 60  #15 mins * 60 seconds
    current_app.redis.expire(task_id, time_to_expire)

    return jsonify(result=result)
コード例 #6
0
def task_add_retrorule_step(form_data, network_id):
    job = get_current_job()
    job.meta['progress'] = 'started'
    job.save_meta()

    clicked_node = form_data['smiles']
    x = form_data['x']
    y = form_data['y']

    data = json.loads(current_app.redis.get(network_id))
    graph_dict = json.loads(data['graph_dict'])
    attr_dict = json.loads(data['attr_dict'])
    target_smiles = data['target_smiles']
    network_options = json.loads(data['network_options'])

    graph = nx.from_dict_of_lists(graph_dict, create_using=nx.DiGraph)
    network = Network(graph=graph, target_smiles=target_smiles)
    network.update_settings(network_options)
    network.add_attributes(attr_dict)

    network.retrorules.retrorules_rxns = current_app.retrorules_rxns
    network.retrorules.retrorule_db = current_app.retrorules_db

    new_substrate_nodes, new_reaction_nodes = network.retrorules.add_step(
        clicked_node)

    all_new_nodes = [clicked_node] + new_substrate_nodes + new_reaction_nodes
    subgraph = network.graph.subgraph(all_new_nodes)

    nodes, edges = network.get_visjs_nodes_and_edges(graph=subgraph)

    for i, node in enumerate(nodes):
        nodes[i].update({'x': x, 'y': y})

    result = {
        'nodes': nodes,
        'edges': edges,
        'to_delete': [],
    }

    data['graph_dict'] = json.dumps(nx.to_dict_of_lists(network.graph))
    data['attr_dict'] = json.dumps(network.attributes_dict())
    data['nodes'] = add_new(data['nodes'], nodes)
    data['edges'] = add_new(data['edges'], edges)

    current_app.redis.mset({network_id: json.dumps(data)})
    current_app.redis.expire(network_id, 5 * 60)

    return result
コード例 #7
0
def task_reorder_pathways(weights, pathways_id):
    job = get_current_job()
    job.meta['progress'] = 'started'
    job.save_meta()

    pathway_settings = json.loads(
        current_app.redis.get(pathways_id + '__pathway_settings'))
    pathway_settings.update({
        'weight_num_enzymes': weights[0],
        'weight_complexity': weights[1],
        'weight_starting': weights[2],
        'weight_known_enzymes': weights[3],
        'weight_diversity': weights[4]
    })
    current_app.redis.mset(
        {f"{pathways_id}__pathway_settings": json.dumps(pathway_settings)})
    current_app.redis.expire(pathways_id, 60 * 60)

    network_data = json.loads(current_app.redis.get(pathways_id + '__network'))
    graph = nx.from_dict_of_lists(json.loads(network_data['graph_dict']),
                                  create_using=nx.DiGraph)
    network = Network(graph=graph,
                      target_smiles=network_data['target_smiles'],
                      print_log=not current_app.config['PRODUCTION'])
    network.update_settings(json.loads(network_data['network_options']))
    network.add_attributes(json.loads(network_data['attr_dict']))

    all_pathways_nodes, all_scores = json.loads(
        current_app.redis.get(f"{pathways_id}__all_pathways"))
    pathways = load_pathways(all_pathways_nodes, all_scores, network)

    pathway_evaluator = evaluate_pathways(pathways, weights)
    print(weights)
    package_evaluated_pathways(pathway_evaluator.df, pathways_id)
    package_visjs_pathways(pathways_id)

    job = get_current_job()
    job.meta['progress'] = 'complete'
    job.save_meta()

    result = {}

    return result
コード例 #8
0
def get_visjs_pathway(task_id, pathway_id, varient):
    network_data = json.loads(current_app.redis.get(task_id + '__network'))
    pathway_data = json.loads(
        current_app.redis.get(task_id + f'__{pathway_id}'))
    pathway_nodes = pathway_data[varient - 1]

    graph = nx.from_dict_of_lists(json.loads(network_data['graph_dict']),
                                  create_using=nx.DiGraph)
    network = Network(graph=graph,
                      target_smiles=network_data['target_smiles'],
                      print_log=not current_app.config['PRODUCTION'])
    network.update_settings(json.loads(network_data['network_options']))
    network.add_attributes(json.loads(network_data['attr_dict']))

    pathway = Pathway(pathway_nodes, network, calc_scores=False)

    nodes, edges = pathway.get_visjs_nodes_and_edges()
    max_var = len(pathway_data)

    return nodes, edges, max_var
コード例 #9
0
def custom_reaction():
    product_smiles = str(request.form['product'])
    substrate_smiles = str(request.form['substrate'])
    reaction_name = str(request.form['name'])
    task_id = request.form['task_id']

    data = json.loads(current_app.redis.get(task_id))
    graph_dict = json.loads(data['graph_dict'])
    attr_dict = json.loads(data['attr_dict'])
    target_smiles = data['target_smiles']
    network_options = json.loads(data['network_options'])

    graph = nx.from_dict_of_lists(graph_dict, create_using=nx.DiGraph)
    network = Network(graph=graph, target_smiles=target_smiles)
    network.update_settings(network_options)
    network.add_attributes(attr_dict)

    new_substrate_nodes, new_reaction_nodes = network.custom_reaction(
        product_smiles, substrate_smiles, reaction_name)

    all_new_nodes = new_substrate_nodes + new_reaction_nodes
    subgraph = network.graph.subgraph(all_new_nodes)
    nodes, edges = network.get_visjs_nodes_and_edges(graph=subgraph)

    result = {
        'nodes': nodes,
        'edges': edges,
    }

    data['graph_dict'] = json.dumps(nx.to_dict_of_lists(network.graph))
    data['attr_dict'] = json.dumps(network.attributes_dict())
    nodes = add_new(data['nodes'], nodes)
    edges = add_new(data['edges'], edges)
    data['nodes'] = nodes
    data['edges'] = edges

    current_app.redis.mset({task_id: json.dumps(data)})
    current_app.redis.expire(task_id, 5 * 60)

    return jsonify(result=result)
コード例 #10
0
def task_make_network(form_data):
    job = get_current_job()
    job.meta['progress'] = 'started'
    job.save_meta()

    network = Network(include_experimental=bool(form_data['include_experimental']),
                      include_two_step=bool(form_data['include_two_step']),
                      include_requires_absence_of_water=bool(form_data['include_requires_absence_of_water']),
                      print_log=not current_app.config['PRODUCTION'])

    network.update_settings({"allow_backwards_steps": bool(form_data['allow_backwards']),
                             "remove_simple": bool(form_data['remove_small']),
                             "similarity_score_threshold": float(form_data['sub_thres']),
                             "combine_enantiomers" : bool(form_data['combine_enantiomers']),
                             "num_enzymes": 1,
                             "calculate_complexities": bool(form_data['calc_complexity']),
                             "calculate_substrate_specificity": bool(form_data['sub_sim']),
                             "max_nodes": int(form_data['max_initial_nodes'],),
                             "colour_reactions" : form_data['colour_reactions'],
                             "colour_arrows": form_data['colour_edges'],
                             "show_negative_enzymes" : form_data['show_neg_enz'],
                             "only_postitive_enzyme_data" : not form_data['show_neg_enz'],
                             "max_reactions": form_data["max_reactions"],
                             'only_reviewed_activity_data': bool(form_data["only_reviewed"])})

    if form_data["specificity_scoring_mode"] == 'Product + substrates (slower)':
        network.update_settings({'specificity_score_substrates' : True})

    #print(f"include_experimental = {network.settings['include_experimental']}")
    #print(f"include_two_step = {network.settings['include_two_step']}")

    network.generate(form_data['target_smiles'], form_data['number_steps'], calculate_scores=False)

    job.meta['progress'] = 'network_generated'
    job.save_meta()

    network.calculate_scores()

    job.meta['progress'] = 'scores_calculated'
    job.save_meta()

    nodes, edges = network.get_visjs_nodes_and_edges()

    #options = {'interaction': {'multiselect': 'true',}}
    options = {}
    default_network_name = 'Network for ' + str(network.target_smiles)

    result = {'save_id':str(uuid.uuid4()),
              'save_links' : [],
              'save_name' : default_network_name,
              'nodes':nodes,
              'edges':edges,
              'options':json.dumps(options),
              'graph_dict':json.dumps(nx.to_dict_of_lists(network.graph)),
              'target_smiles':str(network.target_smiles),
              'network_options':json.dumps(network.settings),
              'attr_dict':json.dumps(network.attributes_dict()),
              'max_reactions' : int(network.settings['max_reactions'])}

    current_app.redis.mset({job.id: json.dumps(result)})
    time_to_expire = 15*60   #15 mins * 60 seconds
    current_app.redis.expire(job.id, time_to_expire)

    return result
コード例 #11
0
def task_get_pathways(form_data):
    job = get_current_job()
    job.meta['progress'] = 'started'
    job.save_meta()

    network = Network(print_log=not current_app.config['PRODUCTION'],
                      include_experimental=form_data['include_experimental'],
                      include_two_step=form_data['include_two_step'],
                      include_requires_absence_of_water=bool(
                          form_data['include_requires_absence_of_water']))

    network.update_settings({
        "remove_simple":
        bool(form_data['remove_small']),
        "combine_enantiomers":
        bool(form_data['combine_enantiomers']),
        'max_nodes':
        int(form_data['max_nodes']),
        'similarity_score_threshold':
        float(form_data['sub_thres']),
        'colour_reactions':
        form_data['colour_reactions'],
        "colour_arrows":
        form_data['colour_edges'],
        "show_negative_enzymes":
        form_data['show_neg_enz'],
        "only_postitive_enzyme_data":
        not form_data['show_neg_enz'],
        'only_reviewed_activity_data':
        bool(form_data["only_reviewed"])
    })

    if form_data[
            "specificity_scoring_mode"] == 'Product + substrates (slower)':
        network.update_settings({'specificity_score_substrates': True})

    network.generate(form_data['target_smiles'],
                     form_data['number_steps'],
                     calculate_scores=False)

    job.meta['progress'] = 'network_generated'
    job.save_meta()

    network.calculate_scores()

    job.meta['progress'] = 'network_scored'
    job.save_meta()

    network_data = {
        'graph_dict': json.dumps(nx.to_dict_of_lists(network.graph)),
        'target_smiles': str(network.target_smiles),
        'network_options': json.dumps(network.settings),
        'attr_dict': json.dumps(network.attributes_dict())
    }

    current_app.redis.mset({f"{job.id}__network": json.dumps(network_data)})
    current_app.redis.expire(f"{job.id}__network", 60 * 60)

    bfs = BFS(network=network,
              max_pathways=form_data['max_pathways'],
              max_pathway_length=form_data['number_steps'],
              min_weight=float(form_data['min_weight']),
              print_log=not current_app.config['PRODUCTION'])
    bfs.run()
    pathways = bfs.get_pathways()

    job.meta['progress'] = 'pathways_generated'
    job.save_meta()

    package_all_pathways(job.id, pathways)

    pathway_evaluator = evaluate_pathways(pathways, [
        form_data['weight_num_enzymes'], form_data['weight_complexity'],
        form_data['weight_starting'], form_data['weight_known_enzymes'],
        form_data['weight_diversity']
    ])

    package_evaluated_pathways(pathway_evaluator.df, job.id)
    package_visjs_pathways(job.id)

    job.meta['progress'] = 'pathways_scored'
    job.save_meta()

    options = {}

    if form_data['hierarchical'] == True:
        options.update({
            "layout": {
                "improvedLayout": 'true',
                'hierarchical': {
                    'direction': 'DU',
                    "sortMethod": "hubsize",
                    "nodeSpacing": 200,
                    "treeSpacing": 400
                }
            }
        })

    pathway_settings = {
        'weight_num_enzymes': form_data['weight_num_enzymes'],
        'weight_complexity': form_data['weight_complexity'],
        'weight_starting': form_data['weight_starting'],
        'weight_known_enzymes': form_data['weight_known_enzymes'],
        'weight_diversity': form_data['weight_diversity'],
        'options': options
    }
    current_app.redis.mset(
        {f"{job.id}__pathway_settings": json.dumps(pathway_settings)})
    current_app.redis.expire(job.id, 60 * 60)