コード例 #1
0
def test_sliding2d():
    """
    Input: A (padded) valid Tensor for slides.  [width, height]
    width_idx
    height_idx
    stride

    Output: A sliding Tensor  [K, K], K = kernel_size
    """

    n_samples = 2
    width = 4
    height = 5

    a = Tensor(np.random.randn(n_samples, width, height), requires_grad=True)
    a.print()

    kernel_size = 2 # Symmetric Squared
    stride = 1

    width_idx = 0
    height_idx = 1

    b = slide.Sliding2D(width_idx=width_idx,
                        height_idx=height_idx,
                        kernel_size=kernel_size,
                        stride=stride)(a)
    b.print()
    b.backward()
    print(a.grad)
コード例 #2
0
def test_convcore2d():

    # input
    n_input_channel = 3
    input_width = 5
    input_height = 5

    # filters
    n_output_channel = 2  # n_filter
    kernel_size = 5
    stride = 1
    padding = 1

    n_samples = 7

    W = Tensor(np.random.randn(kernel_size, kernel_size),
               requires_grad=True)

    X = Tensor(np.random.randn(n_samples,input_width, input_height),
               requires_grad=True)

    Y_pred = conv.ConvCore2D(n_input_channel=n_input_channel,
                         input_width=input_width,
                         input_height=input_height,
                         n_output_channel=n_output_channel,
                         kernel_size=kernel_size,
                         stride=stride,
                         padding=padding,
                             W=W)(X)
    #Y_pred.print()
    Y_pred.backward()
    print(X.grad)
コード例 #3
0
def test_padding2d():

    n_samples = 4
    width = 2
    height = 3

    a = Tensor(np.random.randn(n_samples, width, height), requires_grad=True)
    a.print()

    padding = 1
    b = pad.Padding2D(padding=padding)(a)
    b.print()

    b.backward()
    print(a.grad)
コード例 #4
0
def test_conv2d():

    # input
    n_input_channel = 3
    input_width = 28
    input_height = 28

    # filters
    n_output_channel = 2 # n_filter
    kernel_size = 5
    stride = 2
    padding = 1

    n_samples = 7
    X = Tensor(np.random.randn(n_samples,
                        n_input_channel,
                        input_width, input_height), requires_grad=True)



    Y_pred = conv.Conv2D(n_input_channel=n_input_channel,
                         input_width=input_width,
                         input_height=input_height,
                         n_output_channel=n_output_channel,
                         kernel_size=kernel_size,
                         stride=stride,
                         padding=padding)(X)
    #Y_pred.print()
    Y_pred.backward()
    print(X.grad)

    # Y_pred = ReLU()(Y_pred)

    """
コード例 #5
0
    def forward(self, *args):
        assert len(args) == 2
        assert isinstance(args[0], Tensor)
        assert isinstance(args[1], Tensor)

        self.A = args[0] # Y
        self.B = args[1] # Y_pred

        assert self.A.data.shape == self.B.data.shape

        # loss = .5 * ((Y_pred - Y) ** 2) / n_samples

        n_samples = self.A.data.shape[0]
        loss_value = 0.5 * (np.sum((self.B.data - self.A.data) ** 2))\
                     / n_samples
        C = Tensor(loss_value)
        C.name = self.name
        C.grad_fn = self

        # A = Y is the label, which is constant.
        self.A.requires_grad = False

        # B = Y_pred
        if self.B.requires_grad:
            C.requires_grad = True

        self.A.parent = C
        self.B.parent = C
        C.left_child = self.A
        C.right_child = self.B

        return C
コード例 #6
0
    def forward(self, *args):
        assert len(args) == 2
        assert isinstance(args[0], Tensor)
        assert isinstance(args[1], Tensor)

        self.A = args[0]
        self.B = args[1]

        # Currrently, A is the batch samples
        assert self.A.data.shape[1:] == self.B.data.shape

        C = Tensor(self.A.data *
                   self.B.data)  # In numpy, * means element-wise multiply
        C.name = self.name
        C.grad_fn = self

        if self.A.requires_grad or self.B.requires_grad:
            C.requires_grad = True

        self.A.parent = C
        self.B.parent = C
        C.left_child = self.A
        C.right_child = self.B

        return C
コード例 #7
0
    def forward(self, *args):
        """
        # Input
        X: [n_samples, width, height] (Padded Size)
        width_idx,
        height_idx,
        kernel_size,
        stride

        # Output
        Y_pred: [n_samples, K, K], kernel_size * kernel_size
        Y_pred = X[:, W_i*S:W_i*S+K, H_i*S:H_i*S+K]

        Y_pred = X [:, width_idx * stride : width_idx * stride + kernel_size,
                    height_idx * stride : height_idx * stride + kernel_size]

        """

        assert len(args) == 1
        assert isinstance(args[0], Tensor)
        assert isinstance(args[0].data, np.ndarray)
        assert len(args[0].data.shape) == 3

        X = args[0]
        self.X = X  # 1.Save input tensors for current function

        Y_pred_data = self.X.data[:, self.width_idx *
                                  self.stride:self.width_idx * self.stride +
                                  self.kernel_size, self.height_idx *
                                  self.stride:self.height_idx * self.stride +
                                  self.kernel_size]

        Y_pred = Tensor(Y_pred_data)
        Y_pred.grad_fn = self  # 3. Set grad_fn & requires_grad for current function
        if self.X.requires_grad:
            Y_pred.requires_grad = True

        Y_pred.left_child = X  # 4. Set parent-child relationships.
        X.parent = Y_pred

        return Y_pred  # 2. Return new Tensor
コード例 #8
0
def test_Linear():

    n_samples = 5
    n_input = 4
    n_output = 3

    X = Tensor(np.random.randn(n_samples, n_input),
               requires_grad=False,
               name='X')
    Y = Tensor(np.random.randn(n_samples, n_output), name='Y')

    model = linear.Linear(n_input, n_output, bias=True)

    loss_fn = mse.MSELoss()
    optim = sgd.SGD(lr=1e-3)
    model.compile(loss_fn=loss_fn, optimizer=optim)

    model.fit(X, Y, verbose=0, epochs=100)

    print('Linear best_epoch=%s, min_loss=%.4f' %
          (model.best_epoch, model.min_loss_val))
コード例 #9
0
    def forward(self, *args):
        assert len(args) == 1
        assert isinstance(args[0], Tensor)
        assert self.repeat_time > 0

        self.A = args[0]

        C_data = np.repeat(self.A.data, self.repeat_time)

        if self.target_shape:
            C_data = C_data.reshape(self.target_shape)

        C = Tensor(C_data)
        C.grad_fn = self
        C.left_child = self.A
        self.A.parent = C
        self.output_shape = C_data.shape
        if self.A.requires_grad:
            C.requires_grad = True

        return C
コード例 #10
0
    def forward(self, *args):

        assert len(args) == 1
        assert isinstance(args[0], Tensor)

        self.A = args[0]

        C_data = np.sum(self.A.data, axis=self.axis)
        if isinstance(self.target_shape, tuple):
            C_data = C_data.reshape(self.target_shape)

        self.output_shape = C_data.shape

        C = Tensor(C_data)

        C.name = self.name
        C.grad_fn = self

        if self.A.requires_grad:
            C.requires_grad = True

        self.A.parent = C
        # self.B.parent = C
        C.left_child = self.A
        #C.right_child = self.B

        return C
コード例 #11
0
    def forward(self, *args):
        assert len(args) == 2
        assert isinstance(args[0], Tensor)
        assert isinstance(args[1], Tensor)

        self.A = args[0]
        self.B = args[1]

        assert self.shape == self.B.data.shape

        C_data = self.A.data
        set_sub_ndarray(C_data, self.B.data, self.coordinate_tuple)

        assert C_data.shape == self.A.data.shape

        C = Tensor(C_data)

        C.left_child = self.A
        C.right_child = self.B

        self.output_shape = C_data.shape

        C.grad_fn = self

        self.A.parent = C
        self.B.parent = C

        if self.A.requires_grad or self.B.requires_grad:
            C.requires_grad = True

        return C
コード例 #12
0
    def forward(self, *args):
        """
        # Input
        X: [n_samples, width, height]

        # Output
        Y_pred: [n_samples, width + 2P, height + 2P]
        """

        assert len(args) == 1
        assert isinstance(args[0], Tensor)
        assert isinstance(args[0].data, np.ndarray)
        assert len(args[0].data.shape) == 3
        n_samples, width, height = args[0].data.shape
        self.n_samples = n_samples

        X = args[0]
        self.X = X  # 1.Save input tensors for current function

        P = self.padding

        # !!! Do Zero Padding Here

        Y_pred_data = np.zeros((self.n_samples, width + 2 * P, height + 2 * P))

        # Copy X.data into Y, leave paddings in the around.
        if P == 0:
            Y_pred_data = X.data
        else:
            Y_pred_data[:, P:-P, P:-P] = X.data

        Y_pred = Tensor(Y_pred_data)
        Y_pred.grad_fn = self  # 3. Set grad_fn & requires_grad for current function
        if self.X.requires_grad:
            Y_pred.requires_grad = True

        Y_pred.left_child = X  # 4. Set parent-child relationships.
        X.parent = Y_pred

        return Y_pred  # 2. Return new Tensor
コード例 #13
0
    def forward(self, *args, **kwargs):
        assert len(args) == 1
        assert isinstance(args[0], Tensor)
        assert isinstance(args[0].data, np.ndarray)

        self.A = args[0]

        self.shape = self.A.data.shape

        C_data = self.A.data.reshape(self.target_shape)

        C = Tensor()
        C.data = C_data

        C.left_child = self.A
        # C.right_child = self.B

        C.grad_fn = self

        self.A.parent = C
        #self.B.parent = C

        if self.A.requires_grad:
            C.requires_grad = True

        return C
コード例 #14
0
def test_Dense():

    n_samples = 5
    n_input = 4
    n_output = 3

    X = Tensor(np.random.randn(n_samples, n_input),
               requires_grad=False,
               name='X')
    Y = Tensor(np.random.randn(n_samples, n_output), name='Y')

    model = dnn.Dense(n_input, n_output, bias=True)

    loss_fn = mse.MSELoss()
    optim = sgd.SGD(lr=1e-3)
    activation = relu.ReLU()
    model.compile(loss_fn=loss_fn, optimizer=optim, activation=activation)

    model.fit(X, Y, verbose=0, epochs=100)

    print('Dense best_epoch=%s, min_loss=%.4f' %
          (model.best_epoch, model.min_loss_val))
コード例 #15
0
def test_sgd():

    n_samples = 5
    n_input = 4

    X_1 = Tensor(np.random.randn(n_samples, n_input),
                 requires_grad=True,
                 name='X_1')

    X_2 = Tensor(np.random.randn(n_samples, n_input),
                 requires_grad=True,
                 name='X_2')

    Y = Tensor(np.random.randn(n_samples, n_input),
               requires_grad=False,
               name='Y')

    Y_pred = Add()(X_1, X_2)
    loss_ = mse.MSELoss()(Y, Y_pred)
    loss_.backward()

    old_x1 = X_1.data
    old_x2 = X_2.data

    optim = sgd.SGD(loss_, lr=1e-1)
    optim.step()

    new_x1 = X_1.data
    new_x2 = X_2.data

    print("=" * 10)
    print(old_x1, '\n')
    print(new_x1, '\n')

    print("=" * 10)
    print(old_x2, '\n')
    print(new_x2, '\n')
    """
コード例 #16
0
def test_mse_loss():

    n_samples = 5
    n_output = 4

    Y = Tensor(np.random.randn(n_samples, n_output), name='Y')
    Y_pred = Tensor(np.random.randn(n_samples, n_output),
                    requires_grad=True,
                    name='Y_pred')

    loss_ = mse.MSELoss('loss')(Y, Y_pred)

    Y.print()
    Y_pred.print()

    loss_.print()
    loss_.backward()

    print(Y_pred.grad)
コード例 #17
0
    def forward(self, *args):
        assert len(args) == 2
        assert isinstance(args[0], Tensor)
        assert isinstance(args[1], Tensor)

        self.A = args[0]
        self.B = args[1]

        assert self.A.data.shape == self.B.data.shape

        C = Tensor(self.A.data - self.B.data)
        C.name = self.name
        C.grad_fn = self

        if self.A.requires_grad or self.B.requires_grad:
            C.requires_grad = True

        self.A.parent = C
        self.B.parent = C
        C.left_child = self.A
        C.right_child = self.B

        return C
コード例 #18
0
    def forward(self, *args):

        assert len(args) == 1
        assert isinstance(args[0], Tensor)

        self.A = args[0]

        # Sigmoid: f(x) = sigmoid(x)
        C = Tensor(sigmoid(self.A.data))

        C.name = self.name
        C.grad_fn = self

        if self.A.requires_grad:
            C.requires_grad = True

        self.A.parent = C
        C.left_child = self.A

        self.C = C
        return C
コード例 #19
0
ファイル: relu.py プロジェクト: wadefall/machine_learning
    def forward(self, *args):

        assert len(args) == 1
        assert isinstance(args[0], Tensor)

        self.A = args[0]

        # ReLU: f(x) = max(0, x)
        # For numpy, relu(x) = x * (x > 0), relu_grad(x) = 1 * (x > 0)
        #C = Tensor(np.clip(self.A.data, a_min=0, a_max=np.Infinity))
        C = Tensor(self.A.data * (self.A.data > 0))

        C.name = self.name
        C.grad_fn = self

        if self.A.requires_grad:
            C.requires_grad = True

        self.A.parent = C
        C.left_child = self.A

        return C
コード例 #20
0
    def forward(self, *args):
        assert len(args) == 1
        assert isinstance(args[0], Tensor)

        self.A = args[0]

        C_data = get_sub_ndarray(self.A.data, self.coordinate_tuple)

        C = Tensor()
        C.data = C_data

        C.left_child = self.A
        # C.right_child = self.B

        C.grad_fn = self

        self.A.parent = C
        #self.B.parent = C

        if self.A.requires_grad:
            C.requires_grad = True

        return C
コード例 #21
0
ファイル: conv.py プロジェクト: wadefall/machine_learning
    def forward(self, *args, **kwargs):
        """
        # ConvCore2D (Convolution on a 2-D array of X.data, By a kernel W)
        ## Input: X, [n_samples, input_width, input_height],
        ## Output: Y [n_samples, output_width, output_height]

        W [K, K], weights of one channel.

        padding_X = Padding2D(padding, channel_idx)(X)
            [n_samples, input_width + 2P, input_height + 2P]

        Y_ij = Sliding2D(i, j, stride, channel_idx)(padding_X)
            [K, K]

        Y = SetSubTensor(i, j)(Y_ij)
        """

        assert len(args) == 1
        assert isinstance(args[0], Tensor)

        X = args[0]
        #assert X.data.shape[1:] == (self.input_width, self.input_height)
        assert isinstance(self.W, Tensor)
        assert isinstance(self.W.data, np.ndarray)
        assert self.W.data.shape == (self.kernel_size, self.kernel_size)

        output_width = int((self.input_width - self.kernel_size + 2 * self.padding) \
                            / self.stride + 1)
        output_height = int((self.input_height - self.kernel_size + 2 * self.padding) \
                             / self.stride + 1)

        n_samples = X.data.shape[0]

        # Y_pred: [n_samples, output_width, output_height]
        Y_pred = Tensor(np.zeros((n_samples, output_width, output_height)))

        # X: [n_samples, input_width, input_height]
        # padding_X: [n_samples, input_width+2P, input_weight+2P]
        padding_X = Padding2D(padding=self.padding)(X)

        assert padding_X.data.shape == (n_samples,
                                        self.input_width + 2 * self.padding,
                                        self.input_height + 2 * self.padding)

        for i in range(output_width):
            for j in range(output_height):

                # sub_X: [n_samples, K, K]
                sub_X = Sliding2D(width_idx=i,
                                  height_idx=j,
                                  stride=self.stride,
                                  kernel_size=self.kernel_size)(padding_X)

                assert sub_X.data.shape == (n_samples, self.kernel_size,
                                            self.kernel_size)

                # sub_X: [n_samples, K, K]
                # W: [K, K]
                # Y_pred_ij: [n_samples, K, K]
                # Rely on Right-align Broadcast of numpy in `ElementWiseMul`.
                Y_pred_ij = BatchElementWiseMul()(sub_X, self.W)

                assert Y_pred_ij.data.shape == (n_samples, self.kernel_size,
                                                self.kernel_size)

                # Y_pred_ij: [n_samples, 1, 1]
                target_shape = (n_samples, 1, 1)
                Y_pred_ij = Sum(axis=(1, 2),
                                target_shape=target_shape)(Y_pred_ij)

                assert Y_pred_ij.data.shape == (n_samples, 1, 1)

                # Y_pred: [n_samples, output_width, output_height]
                # Y_pred_ij: [n_samples, 1, 1]
                coord_tuple = ((0, n_samples), (i, i + 1), (j, j + 1))
                Y_pred = SetSubTensor(coord_tuple)(Y_pred, Y_pred_ij)

                assert Y_pred.data.shape == (n_samples, output_width,
                                             output_height)

        return Y_pred
コード例 #22
0
ファイル: conv.py プロジェクト: wadefall/machine_learning
    def forward(self, *args):
        """
        # Dimension Computation Rule
        > output_dim = (N - K + 2P) / S + 1
        > output_dim: output width or height
        > N: input_dim (input width or height)
        > K: filter_size, kernel_size
        > S: stride
        > P: padding

        # Input
        X: [n_samples, n_input_channel, input_width, input_height]

        # Output
        Y: [n_samples, n_output_channel, output_width, output_height]

        # Parameters

        W = n_output_channel * (K * K) [n_output_channel, K, K]
        b = n_output_channel * 1       [n_output, 1]

        total_n_parameters =
            n_output_channel(n_filters) *
                (kernel_size * kernel_size + 1 if is_bias else 0)

        output_width = (input_width - K + 2P) / S + 1
        output_height = (input_height - K + 2P) / S + 1


        # ===============================Important!!!================================
        # ===== Generated Process
        Y = SetSubTensor(i)([Y_i]),
            i = 0, 1, ..., n_output_channel-1,

        Y_i = ListAdd()([ A_j ]) + b_i
            j = 0, 1, ..., n_input_channel-1,
            ListAdd iterate over input channels.

        A_j = ConvCore2D ( X_j, W_i ), See Wikipedia for cross-correlation.

        # ===== Forward Rule

        """

        assert len(args) == 1
        assert isinstance(args[0], Tensor)

        X = args[0]  #[n_samples, n_input_channel, input_width, input_height]

        self.n_samples = X.data.shape[0]

        self.output_width = int((self.input_width - self.kernel_size + 2 * self.padding) \
                            / self.stride + 1)
        self.output_height = int((self.input_height - self.kernel_size + 2 * self.padding) \
                             / self.stride + 1)

        # [n_samples, n_output_channel, output_width, output_height]
        Y_pred = Tensor(np.zeros((self.n_samples, self.n_output_channel,
                                  self.output_width, self.output_height)),
                        requires_grad=True)

        for i in range(self.n_output_channel):

            Y_i = Tensor(np.zeros(
                (self.n_samples, self.output_width, self.output_height)),
                         requires_grad=True)

            for j in range(self.n_input_channel):
                # X: [n_samples, n_input_channel, input_width, input_height]
                # X_j: [n_samples, 1, input_width, input_height]
                coord_tuple = ((0, self.n_samples), (j, j + 1),
                               (0, self.input_width), (0, self.input_height))
                X_j = GetSubTensor(coord_tuple)(X)

                # X_j: [n_samples, 1, input_width, input_height]
                # X_j(Reshaped): [n_samples, input_width, input_height]
                target_shape = (self.n_samples, self.input_width,
                                self.input_height)
                X_j = Reshape(target_shape=target_shape)(X_j)

                # W: [n_output_channel, K, K]
                # W_i: [1, K, K]
                coord_tuple = ((i, i + 1), (0, self.kernel_size),
                               (0, self.kernel_size))
                W_i = GetSubTensor(coord_tuple)(self.W)

                # W_i: [K, K]
                target_shape = (self.kernel_size, self.kernel_size)
                W_i = Reshape(target_shape=target_shape)(W_i)

                assert W_i.data.shape == (self.kernel_size, self.kernel_size)

                # A_j: [n_samples, output_width, output_height]
                # W_i: [K, K]
                A_j = ConvCore2D(W=W_i,
                                 input_width=self.input_width,
                                 input_height=self.input_height,
                                 kernel_size=self.kernel_size,
                                 stride=self.stride,
                                 padding=self.padding)(X_j)

                assert A_j.data.shape == (self.n_samples, self.output_width,
                                          self.output_height)

                # Y_i: [n_samples, output_width, output_height]
                # A_j: [n_samples, output_width, output_height]
                Y_i = Add()(Y_i, A_j)
            """
            # Actually, bias can be added in the very end of the 
            # output_chanel. 
             
            if self.is_bias:
                # b: [n_output_channel, 1]
                # b_i: [1, 1]
                coord_tuple = ((i, i+1),
                               (0, 1))
                b_i = GetSubTensor(coord_tuple)(self.b)

                # Y_i: [n_samples, output_width, output_height]
                # b_i: [1, 1]
                # Rely on broadcast of numpy in `Add`.
                # Here b_i is [1, 1], `Reshape` is not needed.
                Y_i = Add()(Y_i, b_i)
            """

            # Y_pred = [n_sample, n_output_channel, output_width, output_height]
            # Y_i: [n_samples, output_width, output_height]
            coord_tuple = ((0, self.n_samples), (i, i + 1),
                           (0, self.output_width), (0, self.output_height))

            target_shape = (self.n_samples, 1, self.output_width,
                            self.output_height)
            Y_i = Reshape(target_shape=target_shape)(Y_i)

            assert Y_i.data.shape == target_shape

            Y_pred = SetSubTensor(coord_tuple)(Y_pred, Y_i)

        if self.is_bias:
            # Y_pred: [n_samples, n_output_channel, output_width, output_height]
            # b: [n_output_channel, 1]

            repeat_time = self.output_width * self.output_height
            target_shape = (self.n_output_channel, self.output_width,
                            self.output_height)

            b = Repeat(repeat_time=repeat_time,
                       target_shape=target_shape)(self.b)

            assert b.data.shape == (self.n_output_channel, self.output_width,
                                    self.output_height)

            # Note: Rely on Broadcast of numpy.
            Y_pred = Add()(Y_pred, b)

            assert Y_pred.data.shape == (self.n_samples, self.n_output_channel,
                                         self.output_width, self.output_height)

        return Y_pred
コード例 #23
0
def test_sequential():
    n_samples = 5
    n_input = 4
    n_output = 3

    n_tmp = 10

    X = Tensor(np.random.randn(n_samples, n_input),
               requires_grad=False,
               name='X')

    Y = Tensor(np.random.randn(n_samples, n_output),
               requires_grad=False,
               name='Y')

    li = linear.Linear(n_input=n_input, n_output=n_output)(X)
    li_2 = linear.Linear(n_input=n_output, n_output=n_tmp)(li)
    Y_pred = linear.Linear(n_input=n_tmp, n_output=n_output)(li_2)

    #print(Y_pred.data)

    model = sequential.Sequential()
    linear_model = linear.Linear(n_input=n_input, n_output=n_output)
    linear_model_2 = linear.Linear(n_input=n_output, n_output=n_tmp)
    linear_model_3 = linear.Linear(n_input=n_tmp, n_output=n_output)

    model.add_model(linear_model)
    model.add_model(linear_model_2)
    model.add_model(linear_model_3)

    model.compile()
    model.fit(X, Y, epochs=100, verbose=0)

    print('Linear best_epoch=%s, min_loss=%.4f' %
          (model.best_epoch, model.min_loss_val))

    model = sequential.Sequential()
    dense_model = dnn.Dense(n_input=n_input, n_output=n_output,
                            activation='relu', lr=1e-2)
    dense_model_2 = dnn.Dense(n_input=n_output, n_output=n_tmp,
                              activation='relu', lr=1e-2)
    dense_model_3 = dnn.Dense(n_input=n_tmp, n_output=n_output,
                              activation='sigmoid')

    model.add_model(dense_model)
    model.add_model(dense_model_2)
    model.add_model(dense_model_3)

    model.compile()
    model.fit(X, Y, epochs=100, verbose=0)

    print('Dense best_epoch=%s, min_loss=%.4f' %
          (model.best_epoch, model.min_loss_val))

    model = sequential.Sequential(
        dnn.Dense(n_input=n_input, n_output=n_output,
                            activation='relu', lr=1e-2),
        dnn.Dense(n_input=n_output, n_output=n_tmp,
                              activation='relu', lr=1e-2),
        dnn.Dense(n_input=n_tmp, n_output=n_output,
                              activation='sigmoid'))

    #model.add_model(dense_model)
    #model.add_model(dense_model_2)
    #model.add_model(dense_model_3)

    model.compile()
    model.fit(X, Y, epochs=100, verbose=0)

    print('Dense best_epoch=%s, min_loss=%.4f' %
          (model.best_epoch, model.min_loss_val))
コード例 #24
0
def random_init_tensor(shape, **kwargs):
    # Valid numpy shape, int or tuple of int
    # --- assert isinstance(shape, int) or isinstance(shape, tuple)

    return Tensor(np.random.random(shape), **kwargs)
コード例 #25
0
    def forward(self, *args):
        assert len(args) == 2
        assert isinstance(args[0], Tensor)
        assert isinstance(args[1], Tensor)

        self.A = args[0]
        self.B = args[1]

        # May not have the same shape, use broadcast instead.
        # assert self.A.data.shape == self.B.data.shape

        if not isinstance(self.A.data, np.ndarray):
            C = Tensor(self.B.data)
        elif not isinstance(self.B.data, np.ndarray):
            C = Tensor(self.A.data)
        else:
            C = Tensor(self.A.data + self.B.data)

        C.name = self.name
        C.grad_fn = self

        if self.A.requires_grad or self.B.requires_grad:
            C.requires_grad = True

        self.A.parent = C
        self.B.parent = C
        C.left_child = self.A
        C.right_child = self.B

        self.output_shape = C.data.shape

        return C