コード例 #1
0
def transform(data, network, time_factor=1):
    x = data.placeholder
    from returnn.tf.compat import v1 as tf
    # summary("features", x)
    step = network.global_train_step
    step1 = tf.where(tf.greater_equal(step, 1000), 1, 0)
    step2 = tf.where(tf.greater_equal(step, 2000), 1, 0)

    def get_masked():
        x_masked = x
        x_masked = random_mask(
            x_masked,
            batch_axis=data.batch_dim_axis,
            axis=data.time_dim_axis,
            min_num=step1 + step2,
            max_num=tf.maximum(tf.shape(x)[data.time_dim_axis] // 100, 2) *
            (1 + step1 + step2 * 2),
            max_dims=20 // time_factor)
        x_masked = random_mask(x_masked,
                               batch_axis=data.batch_dim_axis,
                               axis=data.feature_dim_axis,
                               min_num=step1 + step2,
                               max_num=2 + step1 + step2 * 2,
                               max_dims=data.dim // 5)
        #summary("features_mask", x_masked)
        return x_masked

    x = network.cond_on_train(get_masked, lambda: x)
    return x
コード例 #2
0
def transform(data, network, time_factor=1):
    x = data.placeholder
    from returnn.tf.compat import v1 as tf
    # summary("features", x)
    step = network.global_train_step
    step1 = tf.where(tf.greater_equal(step, 1000), 1, 0)
    step2 = tf.where(tf.greater_equal(step, 2000), 1, 0)

    def get_masked():
        x_masked = x
        x_masked = random_mask(
            x_masked,
            batch_axis=data.batch_dim_axis,
            axis=data.time_dim_axis,
            min_num=step1 + step2,
            max_num=tf.maximum(tf.shape(x)[data.time_dim_axis] // 100, 2) *
            (1 + step1 + step2 * 2),
            max_dims=20 // time_factor)
        x_masked = random_mask(x_masked,
                               batch_axis=data.batch_dim_axis,
                               axis=data.feature_dim_axis,
                               min_num=step1 + step2,
                               max_num=2 + step1 + step2 * 2,
                               max_dims=data.dim // 5)
        #summary("features_mask", x_masked)
        return x_masked

    cond1 = network.train_flag
    cond2 = tf.greater_equal(
        tf.shape(x)[data.time_dim_axis],
        20)  # ignore specaug for utterances less than 20 frames
    x = tf.cond(tf.logical_and(cond1, cond2), get_masked, lambda: x)
    return x
def transform(source, **kwargs):
    from returnn.tf.compat import v1 as tf
    data = source(0, as_data=True)
    time_factor = 1  #  for switchout == 6
    x = data.placeholder
    network = kwargs["self"].network
    from returnn.tf.compat import v1 as tf
    step = network.global_train_step
    step1 = tf.where(tf.greater_equal(step, 1000), 1, 0)
    step2 = tf.where(tf.greater_equal(step, 2000), 1, 0)

    def get_masked():
        x_masked = x
        x_masked = random_mask(
            x_masked,
            batch_axis=data.batch_dim_axis,
            axis=data.time_dim_axis,
            min_num=step1 + step2,
            max_num=tf.maximum(tf.shape(x)[data.time_dim_axis] // 100, 2) *
            (1 + step1 + step2 * 2),
            max_dims=20 // time_factor)
        x_masked = random_mask(x_masked,
                               batch_axis=data.batch_dim_axis,
                               axis=data.feature_dim_axis,
                               min_num=step1 + step2,
                               max_num=2 + step1 + step2 * 2,
                               max_dims=data.dim // 5)
        return x_masked

    x = network.cond_on_train(get_masked, lambda: x)
    return x
コード例 #4
0
def _mask(x, batch_axis, axis, pos, max_amount):
    """
    :param tf.Tensor x: (batch,time,feature)
    :param int batch_axis:
    :param int axis:
    :param tf.Tensor pos: (batch,)
    :param int|tf.Tensor max_amount: inclusive
    """
    from returnn.tf.compat import v1 as tf
    ndim = x.get_shape().ndims
    n_batch = tf.shape(x)[batch_axis]
    dim = tf.shape(x)[axis]
    amount = tf.random_uniform(shape=(n_batch, ),
                               minval=1,
                               maxval=max_amount + 1,
                               dtype=tf.int32)
    pos2 = tf.minimum(pos + amount, dim)
    idxs = tf.expand_dims(tf.range(0, dim), 0)  # (1,dim)
    pos_bc = tf.expand_dims(pos, 1)  # (batch,1)
    pos2_bc = tf.expand_dims(pos2, 1)  # (batch,1)
    cond = tf.logical_and(tf.greater_equal(idxs, pos_bc),
                          tf.less(idxs, pos2_bc))  # (batch,dim)
    if batch_axis > axis:
        cond = tf.transpose(cond)  # (dim,batch)
    cond = tf.reshape(cond, [
        tf.shape(x)[i] if i in (batch_axis, axis) else 1 for i in range(ndim)
    ])
    from TFUtil import where_bc
    x = where_bc(cond, 0.0, x)
    return x
コード例 #5
0
def _get_mask(x, axis, pos, max_amount):
    """
  :param tf.Tensor x: (batch,time,feature)
  :param int axis:
  :param tf.Tensor pos: (batch,)
  :param int max_amount: inclusive
  """
    from returnn.tf.compat import v1 as tf
    n_batch = tf.shape(x)[0]
    dim = tf.shape(x)[axis]
    amount = tf.random_uniform(shape=(n_batch, ),
                               minval=1,
                               maxval=max_amount + 1,
                               dtype=tf.int32)
    pos2 = tf.minimum(pos + amount, dim)
    idxs = tf.expand_dims(tf.range(0, dim), 0)  # (1,dim)
    pos_bc = tf.expand_dims(pos, 1)  # (batch,1)
    pos2_bc = tf.expand_dims(pos2, 1)  # (batch,1)
    cond = tf.logical_and(tf.greater_equal(idxs, pos_bc),
                          tf.less(idxs, pos2_bc))  # (batch,dim)
    return cond