コード例 #1
0
 def test_random_graph_different_dtype_astype_no_copy(self):
     input_matrix = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]],
                             dtype=np.int64)
     graph = retworkx.PyGraph.from_adjacency_matrix(
         input_matrix.astype(np.float64, copy=False))
     adj_matrix = retworkx.graph_adjacency_matrix(graph, lambda x: x)
     self.assertTrue(np.array_equal(adj_matrix, input_matrix))
コード例 #2
0
ファイル: test_adjacency_matrix.py プロジェクト: kdk/retworkx
 def test_from_adjacency_matrix(self):
     input_array = np.array(
         [[0.0, 4.0, 0.0], [4.0, 0.0, 4.0], [0.0, 4.0, 0.0]],
         dtype=np.float64)
     graph = retworkx.PyGraph.from_adjacency_matrix(input_array)
     out_array = retworkx.graph_adjacency_matrix(graph, lambda x: x)
     self.assertTrue(np.array_equal(input_array, out_array))
コード例 #3
0
    def test_docplex_maxcut(self):
        """ Docplex maxcut test """
        # Generating a graph of 4 nodes
        n = 4
        graph = rx.PyGraph()
        graph.add_nodes_from(np.arange(0, n, 1).tolist())
        elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0)]
        graph.add_edges_from(elist)
        # Computing the weight matrix from the random graph
        w = rx.graph_adjacency_matrix(graph, lambda weight: weight)

        # Create an Ising Hamiltonian with docplex.
        mdl = Model(name='max_cut')
        mdl.node_vars = mdl.binary_var_list(list(range(4)), name='node')
        maxcut_func = mdl.sum(w[i, j] * mdl.node_vars[i] * (1 - mdl.node_vars[j])
                              for i in range(n) for j in range(n))
        mdl.maximize(maxcut_func)
        qubit_op, offset = docplex.get_operator(mdl)

        e_e = NumPyMinimumEigensolver(qubit_op)
        result = e_e.run()

        ee_expected = NumPyMinimumEigensolver(QUBIT_OP_MAXCUT)
        expected_result = ee_expected.run()

        # Compare objective
        self.assertAlmostEqual(result.eigenvalue.real + offset,
                               expected_result.eigenvalue.real + OFFSET_MAXCUT)
コード例 #4
0
 def test_float_cast_weight_func(self):
     graph = retworkx.PyGraph()
     node_a = graph.add_node("a")
     node_b = graph.add_node("b")
     graph.add_edge(node_a, node_b, 7.0)
     res = retworkx.graph_adjacency_matrix(graph, lambda x: float(x))
     self.assertIsInstance(res, np.ndarray)
     self.assertTrue(np.array_equal(np.array([[0.0, 7.0], [7.0, 0.0]]), res))
コード例 #5
0
 def test_negative_weight(self):
     input_matrix = np.array(
         [[0, -1, 0], [-1, 0, -1], [0, -1, 0]], dtype=float
     )
     graph = retworkx.PyGraph.from_adjacency_matrix(input_matrix)
     adj_matrix = retworkx.graph_adjacency_matrix(graph, lambda x: x)
     self.assertTrue(np.array_equal(adj_matrix, input_matrix))
     self.assertEqual([(0, 1, -1), (1, 2, -1)], graph.weighted_edge_list())
コード例 #6
0
 def test_graph_with_index_holes(self):
     graph = retworkx.PyGraph()
     node_a = graph.add_node("a")
     node_b = graph.add_node("b")
     graph.add_edge(node_a, node_b, 1)
     node_c = graph.add_node("c")
     graph.add_edge(node_a, node_c, 1)
     graph.remove_node(node_b)
     res = retworkx.graph_adjacency_matrix(graph, lambda x: 1)
     self.assertIsInstance(res, np.ndarray)
     self.assertTrue(np.array_equal(np.array([[0, 1], [1, 0]]), res))
コード例 #7
0
 def test_multigraph_sum_cast_weight_func_non_zero_null(self):
     graph = retworkx.PyGraph()
     node_a = graph.add_node("a")
     node_b = graph.add_node("b")
     graph.add_edge(node_a, node_b, 7.0)
     graph.add_edge(node_a, node_b, 0.5)
     res = retworkx.graph_adjacency_matrix(
         graph, lambda x: float(x), null_value=np.inf
     )
     self.assertIsInstance(res, np.ndarray)
     self.assertTrue(
         np.array_equal(np.array([[np.inf, 7.5], [7.5, np.inf]]), res)
     )
コード例 #8
0
 def test_single_neighbor(self):
     graph = retworkx.PyGraph()
     node_a = graph.add_node('a')
     node_b = graph.add_node('b')
     graph.add_edge(node_a, node_b, 'edge_a')
     node_c = graph.add_node('c')
     graph.add_edge(node_b, node_c, 'edge_b')
     res = retworkx.graph_adjacency_matrix(graph, lambda x: 1)
     self.assertIsInstance(res, np.ndarray)
     self.assertTrue(
         np.array_equal(
             np.array([[0.0, 1.0, 0.0], [1.0, 0.0, 1.0], [0.0, 1.0, 0.0]],
                      dtype=np.float64), res))
コード例 #9
0
 def test_default_weight(self):
     graph = retworkx.PyGraph()
     node_a = graph.add_node('a')
     node_b = graph.add_node('b')
     graph.add_edge(node_a, node_b, 'edge_a')
     node_c = graph.add_node('c')
     graph.add_edge(node_b, node_c, 'edge_b')
     res = retworkx.graph_adjacency_matrix(graph, default_weight=4)
     self.assertIsInstance(res, np.ndarray)
     self.assertTrue(
         np.array_equal(
             np.array([[0.0, 4.0, 0.0], [4.0, 0.0, 4.0], [0.0, 4.0, 0.0]],
                      dtype=np.float64), res))
コード例 #10
0
 def test_no_weight_fn(self):
     graph = retworkx.PyGraph()
     node_a = graph.add_node("a")
     node_b = graph.add_node("b")
     graph.add_edge(node_a, node_b, "edge_a")
     node_c = graph.add_node("c")
     graph.add_edge(node_b, node_c, "edge_b")
     res = retworkx.graph_adjacency_matrix(graph)
     self.assertIsInstance(res, np.ndarray)
     self.assertTrue(
         np.array_equal(
             np.array(
                 [[0.0, 1.0, 0.0], [1.0, 0.0, 1.0], [0.0, 1.0, 0.0]],
                 dtype=np.float64,
             ),
             res,
         ))
コード例 #11
0
 def test_random_graph_float_dtype(self):
     input_matrix = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=float)
     graph = retworkx.PyGraph.from_adjacency_matrix(input_matrix)
     adj_matrix = retworkx.graph_adjacency_matrix(graph, lambda x: x)
     self.assertTrue(np.array_equal(adj_matrix, input_matrix))
コード例 #12
0
 def test_random_graph_full_path(self):
     graph = retworkx.undirected_gnp_random_graph(100, 0.95, seed=42)
     adjacency_matrix = retworkx.graph_adjacency_matrix(graph)
     new_graph = retworkx.PyGraph.from_adjacency_matrix(adjacency_matrix)
     new_adjacency_matrix = retworkx.graph_adjacency_matrix(new_graph)
     self.assertTrue(np.array_equal(adjacency_matrix, new_adjacency_matrix))
コード例 #13
0
 def test_no_edge_graph_adjacency_matrix(self):
     graph = retworkx.PyGraph()
     for i in range(50):
         graph.add_node(i)
     res = retworkx.graph_adjacency_matrix(graph, lambda x: 1)
     self.assertTrue(np.array_equal(np.zeros([50, 50]), res))
コード例 #14
0
        width = initial_width * pow(2, i)
        for u, v in nx.bfs_beam_edges(a, s, v, width):
            if con(v):
                return v
    print(nx.NodeNotFound("no node"))


def has_high_centrality(v: int) -> bool:
    return centrality[v] >= avg_centrality


seed: int = 89

# conversion of retworkx graph to networkx couldn't find any func in retworkx to calculate centrality
G: rx.PyGraph = rx.undirected_gnp_random_graph(100, 0.5, seed=seed)
n1: numpy.ndarray = rx.graph_adjacency_matrix(G, None)
G1: nx.classes.graph.Graph = nx.from_numpy_matrix(n1)

centrality: dict = nx.eigenvector_centrality(G1)
avg_centrality: float = sum(centrality.values()) / len(G1)

source: int = 0
value = centrality.get
print(type(value))
condition: Callable[[int], bool] = has_high_centrality
found_node: int = progressive_widening_search(G1, source, value, condition)
c: float = centrality[found_node]
print(f"found node {found_node} with centrality {c}")

# plotting
pos: dict = nx.spring_layout(G1, seed=seed)
コード例 #15
0
G: rx.PyGraph = rx.generators.grid_graph(5, 5, None)

dot: Dot = pydot.graph_from_dot_data(G.to_dot())[0]

# plotting retworkx not working finding an alternative method
"""
with tempfile.TemporaryDirectory() as tmpdirname:
    tmp_path = os.path.join(tmpdirname, 'dag.png')
    dot.write_png(tmp_path)
    image = Image.open(tmp_path)
    os.remove(tmp_path)
image
"""

M: ndarray = rx.graph_adjacency_matrix(G, None)
AdjList: defaultdict = convert(M)

a: EdgeList = G.edge_list()
with tempfile.NamedTemporaryFile('wt') as fd:
    path: str = fd.name
    for i in a:
        fd.write(str(i[0]) + ' ' + str(i[1]) + '\n')
    fd.flush()
    H: rx.PyGraph = rx.PyGraph()
    H.read_edge_list(path)

dot = pydot.graph_from_dot_data(H.to_dot())[0]
"""
with tempfile.NamedTemporaryFile('wt') as fd:
    tmp_path = fd.name
コード例 #16
0
 def peakmem_adjacency_matrix(self, _, __):
     retworkx.graph_adjacency_matrix(self.graph, weight_fn=float)