def mexico_filter(latitude, longitude): geo = reverse_geocoder.RGeocoder(mode=1, verbose=True, stream=obj_data) coordinates = (latitude, longitude), (latitude, longitude) results = geo.query(coordinates) for response_dictionary in results: if [x for x in response_dictionary if response_dictionary[x] == 'US']: #logger.info("####################### MX RECORD ######################################################") return True return False
def get_countries(coordinates): countries = defaultdict(lambda: 0) geo = rg.RGeocoder(mode=2, verbose=True, stream=io.StringIO( open('./input/rg_cities1000.csv', encoding='utf-8').read())) results = geo.query(coordinates) for i in results: countries[i['cc'].lower()] += 1 return countries
def mexico_filter(latitude, longitude): geo = reverse_geocoder.RGeocoder(mode=1, verbose=True, stream=obj_data) coordinates = (latitude, longitude), (latitude, longitude) results = geo.query(coordinates) for response_dictionary in results: if (response_dictionary['name'] == 'Manhattan' and response_dictionary['cc'] == 'US') or (response_dictionary['name'] == 'San Francisco' and response_dictionary['cc'] == 'US'): return True else: return False
# -*- coding: utf-8 -*- """ """ import io import csv import reverse_geocoder as rg from datetime import datetime # Sets our own zip code data geo = rg.RGeocoder(mode=1, verbose=True, stream=io.StringIO(open('ny_zip_coords_fixed.csv', encoding='utf-8').read())) def getZips(coordinates): return geo.query(coordinates) # Cleans time from datetime # Reformats date to match NYPD complaint data def cleanDate(string): date = string[:10] date = string[5:7] + "/" + string[8:10] + "/" + string[0:4] return date def writeRows_TDP(numRows, neededInfo, result, outputCSV): for x in range(0, numRows): date = cleanDate(str(neededInfo[x][0])) outRow = [date, result[2*x]['name'], result[2*x+1]['name'], neededInfo[x][1]] outputCSV.writerow(outRow) def writeRows_CDP(numRows, neededInfo, result, outputCSV): for x in range(0, numRows): #date = cleanDate(str(neededInfo[x][0]))
import io import reverse_geocoder as rg from pyspark import SparkContext from pyspark.sql import HiveContext # start Spark and Hive SQL contexts sc = SparkContext("local", "demo app") hc = HiveContext(sc) # read GeoNames data file geo = rg.RGeocoder(mode=2, verbose=True, stream=io.StringIO(open('/data/rohit/script/US_ascii.csv', 'r').read().decode('utf-8'))) print "Printing first 10 rows from rides table." sqlQuery = "SELECT * FROM rides_yg limit 10" hc.sql(sqlQuery).show() coordinates = (40.742596,-74.153481),(41.316105,-74.127701),(40.786224,-74.043663),(40.736961,-74.038422),(40.748005,-74.032402),(41.031322,-74.02137 ),(40.647068,-74.010513),(40.708969,-74.010262),(40.720478,-74.010147) print geo.query(coordinates)
for venue_cat in venues_cat: if venue_cat not in cat_schema_mapping: print(venue_cat) cat_missing = True assert cat_missing is False # reverse geocode the venues coords = [] for venue_id in venues_list: venue_lat = venues[venue_id]['lat'] venue_lon = venues[venue_id]['lon'] coords.append((venue_lat, venue_lon)) geo = rg.RGeocoder(mode=2, verbose=True, stream=io.StringIO( open('cities.csv', encoding='utf-8').read())) venues_rg = geo.query(coords) for index, venue_id in enumerate(venues_list): venues[venue_id]['geonames'] = 'geonames:' + venues_rg[index]['name'] venues[venue_id]['city'] = venues_rg[index]['admin1'] venues[venue_id]['country'] = venues_rg[index]['admin2'] if venues_rg[index]['cc'] != '': venues[venue_id]['wikidata'] = 'wd:' + venues_rg[index]['cc'] else: venues[venue_id]['wikidata'] = '' assert len(venues_rg) == len(venues) print("Geocoding", len(venues_rg), "venues...") # load the checkins
import reverse_geocoder as rg files_list = os.listdir("BlackMarbleLandOnly") county_light_vals = {} num_exceptions = 0 # Processed every so iterations querable_coords = list() # List of float values current_pixel_values = [] geo = rg.RGeocoder(mode=2, verbose=True, stream=io.StringIO( open('rg_cities1000.txt', encoding='utf-8').read())) for curr_file in files_list: curr_path = "BlackMarbleLandOnly/" + str(curr_file) with open(curr_path) as csv_file: # csv_reader = csv.reader(csv_file, delimiter = ',') # Ignore null bytes csv_reader = csv.reader((x.replace('\0', '') for x in csv_file), delimiter=',') line_count = 0 i = 0 j = 0