コード例 #1
0
def test_glm_gaussian(make_gaus_data, make_random):

    X, y, Xs, ys = make_gaus_data

    basis = LinearBasis(onescol=True)
    lhood = Gaussian()

    # simple SGD
    glm = GeneralizedLinearModel(lhood, basis, random_state=make_random)
    glm.fit(X, y)
    Ey = glm.predict(Xs)
    assert smse(ys, Ey) < 0.1

    # Test BasisCat
    basis = LinearBasis(onescol=True) \
        + RandomRBF(nbases=20, Xdim=X.shape[1]) \
        + RandomMatern52(nbases=20, Xdim=X.shape[1])

    glm = GeneralizedLinearModel(lhood, basis, random_state=make_random)
    glm.fit(X, y)
    Ey = glm.predict(Xs)
    assert smse(ys, Ey) < 0.1

    # Test upper quantile estimates
    py, _, _ = glm.predict_cdf(Xs, 1e5)
    assert np.allclose(py, 1.)

    # Test log probability
    lpy, _, _ = glm.predict_logpdf(Xs, Ey)
    assert np.all(lpy > -100)

    EyQn, EyQx = glm.predict_interval(Xs, 0.9)
    assert all(Ey <= EyQx)
    assert all(Ey >= EyQn)
コード例 #2
0
def test_glm_binomial(make_binom_data, make_random):
    # This is more to test the logic than to test if the model can overfit,
    # hence more relaxed SMSE. This is because this is a harder problem than
    # the previous case. We also haven't split training ans test sets, since we
    # want to check the latent function and bounds

    X, y, p, n = make_binom_data
    f = p * n

    basis = LinearBasis(onescol=True) \
        + RandomRBF(nbases=20, Xdim=X.shape[1]) \
        + RandomMatern52(nbases=20, Xdim=X.shape[1])
    lhood = Binomial()
    largs = (n, )

    # SGD
    glm = GeneralizedLinearModel(lhood, basis, random_state=make_random)
    glm.fit(X, y, likelihood_args=largs)
    Ey = glm.predict(X, likelihood_args=largs)

    assert smse(f, Ey) < 1

    # Test upper quantile estimates
    py, _, _ = glm.predict_cdf(X, 1e5, likelihood_args=largs)
    assert np.allclose(py, 1.)

    EyQn, EyQx = glm.predict_interval(X, 0.9, likelihood_args=largs)
    assert all(Ey <= EyQx)
    assert all(Ey >= EyQn)
コード例 #3
0
def test_glm_binomial(make_binom_data):
    # This is more to test the logic than to test if the model can overfit,
    # hence more relaxed SMSE. This is because this is a harder problem than
    # the previous case.

    X, y, p, n = make_binom_data
    f = p * n

    basis = LinearBasis(onescol=True) \
        + RandomRBF(nbases=20, Xdim=X.shape[1]) \
        + RandomMatern52(nbases=20, Xdim=X.shape[1])
    lhood = Binomial()
    largs = (n,)

    # SGD
    glm = GeneralisedLinearModel(lhood, basis, random_state=randstate)
    glm.fit(X, y, likelihood_args=largs)
    Ey = glm.predict(X, likelihood_args=largs)

    assert smse(f, Ey) < 1

    # Test upper quantile estimates
    py, _, _ = glm.predict_cdf(1e5, X, likelihood_args=largs)
    assert np.allclose(py, 1.)

    EyQn, EyQx = glm.predict_interval(0.9, X, likelihood_args=largs)
    assert all(Ey <= EyQx)
    assert all(Ey >= EyQn)
コード例 #4
0
def test_regression(make_data):

    X, y, w = make_data

    basis = LinearBasis(onescol=False)

    params = regression.learn(X, y, basis, [])
    Ey, Vf, Vy = regression.predict(X, basis, *params)

    assert rsquare(Ey, y) > 0.9

    basis = LinearBasis(onescol=False) + RandomRBF(nbases=10, Xdim=X.shape[1])

    params = regression.learn(X, y, basis, [1.])
    Ey, Vf, Vy = regression.predict(X, basis, *params)

    assert rsquare(Ey, y) > 0.9
コード例 #5
0
def test_glm(make_data):

    X, y, w = make_data

    basis = LinearBasis(onescol=False)
    lhood = Gaussian()

    params = glm.learn(X, y, lhood, [1.], basis, [])
    Ey, _, _, _ = glm.predict_meanvar(X, lhood, basis, *params)

    assert rsquare(Ey, y) > 0.9

    basis = LinearBasis(onescol=False) + RandomRBF(nbases=10, Xdim=X.shape[1])

    params = glm.learn(X, y, lhood, [1.], basis, [1.])
    Ey, _, _, _ = glm.predict_meanvar(X, lhood, basis, *params)

    assert rsquare(Ey, y) > 0.9
コード例 #6
0
def test_slm(make_gaus_data):

    X, y, Xs, ys = make_gaus_data

    basis = LinearBasis(onescol=False)

    slm = StandardLinearModel(basis)
    slm.fit(X, y)
    Ey = slm.predict(Xs)

    assert smse(ys, Ey) < 0.1

    basis = LinearBasis(onescol=False) \
        + RandomRBF(nbases=10, Xdim=X.shape[1]) \
        + RandomMatern52(nbases=10, Xdim=X.shape[1])

    slm = StandardLinearModel(basis)
    slm.fit(X, y)
    Ey = slm.predict(Xs)

    assert smse(ys, Ey) < 0.1