コード例 #1
0
ファイル: craft_world.py プロジェクト: yanxi0830/LM-RM
def play(params, task, max_time):
    from reward_machines.reward_machine import RewardMachine

    # commands
    str_to_action = {
        "w": Actions.up.value,
        "d": Actions.right.value,
        "s": Actions.down.value,
        "a": Actions.left.value
    }
    # play the game!
    game = CraftWorld(params)
    rm = RewardMachine(task)
    s1 = game.get_state()
    u1 = rm.get_initial_state()
    for t in range(max_time):
        # Showing game
        game.show_map()
        print("Events:", game.get_true_propositions())
        print("Features:", game.get_features())
        print("Features.shape:", game.get_features().shape)
        print("Features.manhattan_distance:",
              game._get_features_manhattan_distance())
        acts = game.get_actions()
        # Getting action
        print("\nAction? ", end="")
        a = input()
        print()
        # Executing action
        if a in str_to_action and str_to_action[a] in acts:
            game.execute_action(str_to_action[a])

            s2 = game.get_state()
            events = game.get_true_propositions()
            u2 = rm.get_next_state(u1, events)
            reward = rm.get_reward(u1, u2, s1, a, s2)

            if game.env_game_over or rm.is_terminal_state(u2):  # Game Over
                print("Game Over")
                break

            s1, u1 = s2, u2
        else:
            print("Forbidden action")
    game.show_map()
    return reward
コード例 #2
0
ファイル: experiments.py プロジェクト: yanxi0830/LM-RM
def load_model_and_test_composition(alg_name, tester, curriculum, num_times,
                                    new_task, show_print):
    """
    Testing a single task (see run_new_task.py)
    TODO: refactor with get_qrm_generalization_performance
    """
    for n in range(num_times):
        random.seed(n)
        sess = tf.Session()

        curriculum.restart()

        # Initialize a policy_bank graph to be loaded with saved model
        task_aux = Game(tester.get_task_params(curriculum.get_current_task()))
        num_features = len(task_aux.get_features())
        num_actions = len(task_aux.get_actions())
        policy_bank = PolicyBankDQN(sess, num_actions, num_features,
                                    tester.learning_params,
                                    tester.get_reward_machines())

        # Load the model
        saver = tf.train.Saver()

        # Get path
        if task_aux.params.game_type == "craftworld":
            save_model_path = '../model/' + str(
                task_aux.params.game_type) + '/' + task_aux.game.get_map_id()
        else:
            save_model_path = '../model/' + str(task_aux.params.game_type)

        saver.restore(sess, tf.train.latest_checkpoint(save_model_path))

        reward_machines = tester.get_reward_machines()
        print("Loaded {} policies (RMs)".format(len(reward_machines)))

        # partial-ordered RM of new task
        new_task_rm = RewardMachine(new_task.rm_file)
        linearized_plans = new_task.get_linearized_plan()
        print("There are {} possible linearized plans: {}".format(
            len(linearized_plans), linearized_plans))
        least_cost = float('inf')
        best_policy = [
        ]  # list of (rm_id, state_id) corresponding to each action

        for i, curr_plan in enumerate(linearized_plans):
            # Get the least cost path for the current linearized plan
            # cost, switching_seq = search_policy(curr_plan, tester, curriculum, new_task_rm, reward_machines,
            #                                     policy_bank, bound=least_cost)
            cost, switching_seq = dfs_search_policy(curr_plan,
                                                    tester,
                                                    curriculum,
                                                    new_task_rm,
                                                    reward_machines,
                                                    policy_bank,
                                                    bound=least_cost)
            if cost < least_cost:
                print(cost, switching_seq)
                least_cost = cost
                best_policy = switching_seq

        # Execute the best policy
        print("Executing Best Policy...{} ({} steps)".format(
            best_policy, least_cost))
        task = Game(tester.get_task_params(curriculum.get_current_task()))
        new_task_u1 = new_task_rm.get_initial_state()
        s1, s1_features = task.get_state_and_features()
        r_total = 0
        curr_policy = None
        for t in range(int(least_cost)):
            if show_print:
                task.render()
            if curr_policy is None:
                curr_policy = best_policy.pop(0)
            curr_policy_rm = reward_machines[curr_policy[0]]

            a = policy_bank.get_best_action(curr_policy[0],
                                            curr_policy[1],
                                            s1_features.reshape(
                                                (1, num_features)),
                                            add_noise=False)
            if show_print: print("Action:", Actions(a))
            task.execute_action(a)

            s2, s2_features = task.get_state_and_features()
            new_task_u2 = new_task_rm.get_next_state(
                new_task_u1, task.get_true_propositions())

            curr_policy_u2 = curr_policy_rm.get_next_state(
                curr_policy[1], task.get_true_propositions())
            desired_next_state = curr_policy_rm.get_next_state(
                curr_policy[1], curr_policy[2])
            if curr_policy_u2 == desired_next_state:
                logger.info("EXECUTED ACTION {}, SWITCHING POLICIES".format(
                    curr_policy[2]))
                curr_policy = None

            r = new_task_rm.get_reward(new_task_u1, new_task_u2, s1, a, s2)
            r_total += r * tester.learning_params.gamma**t

            s1, s1_features = s2, s2_features
            new_task_u1 = new_task_u2
        if show_print:
            task.render()
        print("Rewards:", r_total)

        return r_total
コード例 #3
0
ファイル: experiments.py プロジェクト: yanxi0830/LM-RM
def get_qrm_generalization_performance(alg_name, tester, curriculum, num_times,
                                       new_tasks, show_print):
    """
    Testing all the tasks in new_tasks and return the success rate and cumulative reward
    """

    sess = tf.Session()
    curriculum.restart()
    # Initialize a policy_bank graph to be loaded with saved model
    task_aux = Game(tester.get_task_params(curriculum.get_current_task()))
    num_features = len(task_aux.get_features())
    num_actions = len(task_aux.get_actions())
    policy_bank = PolicyBankDQN(sess, num_actions, num_features,
                                tester.learning_params,
                                tester.get_reward_machines())

    # Load the model
    saver = tf.train.Saver()

    # Get path
    if task_aux.params.game_type == "craftworld":
        save_model_path = '../model/' + str(
            task_aux.params.game_type) + '/' + task_aux.game.get_map_id()
    else:
        save_model_path = '../model/' + str(task_aux.params.game_type)

    saver.restore(sess, tf.train.latest_checkpoint(save_model_path))

    reward_machines = tester.get_reward_machines()
    print("Loaded {} policies (RMs)".format(len(reward_machines)))

    success_count = 0
    all_task_rewards = []

    for new_task in new_tasks:
        # partial-ordered RM of new task
        new_task_rm = RewardMachine(new_task.rm_file)
        linearized_plans = new_task.get_linearized_plan()
        print("There are {} possible linearized plans: {}".format(
            len(linearized_plans), linearized_plans))
        least_cost = float('inf')
        best_policy = [
        ]  # list of (rm_id, state_id) corresponding to each action

        for i, curr_plan in enumerate(linearized_plans):
            # Get the least cost path for the current linearized plan
            cost, switching_seq = dfs_search_policy(curr_plan,
                                                    tester,
                                                    curriculum,
                                                    new_task_rm,
                                                    reward_machines,
                                                    policy_bank,
                                                    bound=least_cost)
            if cost < least_cost:
                print(cost, switching_seq)
                least_cost = cost
                best_policy = switching_seq
                # finding optimal takes too long, end early if find a solution
                break

        # Couldn't solve the task
        if least_cost == np.inf:
            print("Failed to execute this task: {}".format(new_task))
            r_total = 0.0
            all_task_rewards.append(r_total)
            continue

        # Execute the best policy
        print("Executing Best Policy...{} ({} steps)".format(
            best_policy, least_cost))
        task = Game(tester.get_task_params(curriculum.get_current_task()))
        new_task_u1 = new_task_rm.get_initial_state()
        s1, s1_features = task.get_state_and_features()
        r_total = 0
        curr_policy = None

        for t in range(int(least_cost)):
            if show_print:
                task.render()
            if curr_policy is None:
                curr_policy = best_policy.pop(0)
            curr_policy_rm = reward_machines[curr_policy[0]]

            a = policy_bank.get_best_action(curr_policy[0],
                                            curr_policy[1],
                                            s1_features.reshape(
                                                (1, num_features)),
                                            add_noise=False)
            task.execute_action(a)

            s2, s2_features = task.get_state_and_features()
            new_task_u2 = new_task_rm.get_next_state(
                new_task_u1, task.get_true_propositions())

            curr_policy_u2 = curr_policy_rm.get_next_state(
                curr_policy[1], task.get_true_propositions())
            desired_next_state = curr_policy_rm.get_next_state(
                curr_policy[1], curr_policy[2])
            if curr_policy_u2 == desired_next_state:
                logger.info("EXECUTED ACTION {}, SWITCHING POLICIES".format(
                    curr_policy[2]))
                curr_policy = None

            r = new_task_rm.get_reward(new_task_u1, new_task_u2, s1, a, s2)
            r_total += r * tester.learning_params.gamma**t

            s1, s1_features = s2, s2_features
            new_task_u1 = new_task_u2
        if show_print:
            task.render()
        print("Rewards:", r_total)

        all_task_rewards.append(r_total)
        if r_total > 0:
            success_count += 1

    success_rate = float(success_count) / len(new_tasks)
    acc_reward = sum(all_task_rewards)
    print(all_task_rewards)
    return success_rate, acc_reward
コード例 #4
0
def play():
    import pygame, time
    from reward_machines.reward_machine import RewardMachine

    from tester.tester import Tester
    from tester.tester_params import TestingParameters    
    from qrm.learning_params import LearningParameters

    # hack: moving one directory up (to keep relative references to ./src)
    import os
    os.chdir("../")

    tester = Tester(LearningParameters(), TestingParameters(), "../experiments/water/tests/water_7.txt")
    if tester is None:
        task = "../experiments/water/reward_machines/t1.txt"
        state_file = "../experiments/water/maps/world_0.pkl"
        max_x = 400
        max_y = 400
        b_num_per_color = 2
        b_radius = 15
        use_velocities = True
        ball_disappear = False

        params = WaterWorldParams(state_file, b_radius=b_radius, max_x=max_x, max_y=max_y, 
                                  b_num_per_color=b_num_per_color, use_velocities = use_velocities, 
                                  ball_disappear=ball_disappear)
    else:
        task   = tester.get_task_rms()[-2]
        params = tester.get_task_params(task).game_params

    max_x, max_y = params.max_x, params.max_y

    game = WaterWorld(params)    
    rm = RewardMachine(task) 
    s1 = game.get_state()
    u1 = rm.get_initial_state()

    print("actions", game.get_actions())

    pygame.init()
    
    black = (0,0,0)
    white = (255,255,255)
    colors = get_colors()
    
    gameDisplay = pygame.display.set_mode((max_x, max_y))
    pygame.display.set_caption('Water world :)')
    clock = pygame.time.Clock()
    crashed = False

    t_previous = time.time()
    actions = set()
    while not crashed:
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                crashed = True
            if event.type == pygame.KEYUP:
                if Actions.left in actions and event.key == pygame.K_LEFT:
                    actions.remove(Actions.left)
                if Actions.right in actions and event.key == pygame.K_RIGHT:
                    actions.remove(Actions.right)
                if Actions.up in actions and event.key == pygame.K_UP:
                    actions.remove(Actions.up)
                if Actions.down in actions and event.key == pygame.K_DOWN:
                    actions.remove(Actions.down)
            if event.type == pygame.KEYDOWN:
                if event.key == pygame.K_LEFT:
                    actions.add(Actions.left)
                if event.key == pygame.K_RIGHT:
                    actions.add(Actions.right)
                if event.key == pygame.K_UP:
                    actions.add(Actions.up)
                if event.key == pygame.K_DOWN:
                    actions.add(Actions.down)
            

        t_current = time.time()
        t_delta = (t_current - t_previous)

        # Getting the action
        if len(actions) == 0: a = Actions.none
        else: a = random.choice(list(actions))

        # Executing the action
        game.execute_action(a.value, t_delta)

        s2 = game.get_state()
        events = game.get_true_propositions()
        u2 = rm.get_next_state(u1, events)
        reward = rm.get_reward(u1,u2,s1,a,s2)

        # printing image
        gameDisplay.fill(white)
        for b in game.balls:
            draw_ball(b, colors, 0, gameDisplay, pygame, max_y)
        draw_ball(game.agent, colors, 3, gameDisplay, pygame, max_y)
        pygame.display.update()
        clock.tick(20)

        # print info related to the task
        if reward > 0: print("REWARD!! ----------------!------------!")
        if rm.is_terminal_state(u2): 
            print("Machine state:", u2, "(terminal)")
        else:
            print("Machine state:", u2)

        t_previous = t_current
        s1, u1 = s2, u2

    pygame.quit()
コード例 #5
0
def run_lrm(env_params, lp, rl):
    """
    This code learns a reward machine from experience and uses dqn to learn an optimal policy for that RM:
        - 'env_params' is the environment parameters
        - 'lp' is the set of learning parameters
    Returns the training rewards
    """
    # Initializing parameters and the game
    env = Game(env_params)
    rm = RewardMachine(lp.rm_u_max, lp.rm_preprocess,
                       lp.rm_tabu_size, lp.rm_workers, lp.rm_lr_steps,
                       env.get_perfect_rm(), lp.use_perfect_rm)
    actions = env.get_actions()
    policy = None
    train_rewards = []
    rm_scores = []
    reward_total = 0
    last_reward = 0
    step = 0

    # Collecting random traces for learning the reward machine
    print("Collecting random traces...")
    while step < lp.rm_init_steps:
        # running an episode using a random policy
        env.restart()
        trace = [(env.get_events(), 0.0)]
        for _ in range(lp.episode_horizon):
            # executing a random action
            a = random.choice(actions)
            reward, done = env.execute_action(a)
            o2_events = env.get_events()
            reward_total += reward
            trace.append((o2_events, reward))
            step += 1
            # Testing
            if step % lp.test_freq == 0:
                print("Step: %d\tTrain: %0.1f" %
                      (step, reward_total - last_reward))
                train_rewards.append((step, reward_total - last_reward))
                last_reward = reward_total
            # checking if the episode finishes
            if done or lp.rm_init_steps <= step:
                if done: rm.add_terminal_observations(o2_events)
                break
        # adding this trace to the set of traces that we use to learn the rm
        rm.add_trace(trace)

    # Learning the reward machine using the collected traces
    print("Learning a reward machines...")
    _, info = rm.learn_the_reward_machine()
    rm_scores.append((step, ) + info)

    # Start learning a policy for the current rm
    finish_learning = False
    while step < lp.train_steps and not finish_learning:
        env.restart()
        o1_events = env.get_events()
        o1_features = env.get_features()
        u1 = rm.get_initial_state()
        trace = [(o1_events, 0.0)]
        add_trace = False

        for _ in range(lp.episode_horizon):

            # reinitializing the policy if the rm changed
            if policy is None:
                print("Learning a policy for the current RM...")
                if rl == "dqn":
                    policy = DQN(lp, len(o1_features), len(actions), rm)
                elif rl == "qrm":
                    policy = QRM(lp, len(o1_features), len(actions), rm)
                else:
                    assert False, "RL approach is not supported yet"

            # selecting an action using epsilon greedy
            a = policy.get_best_action(o1_features, u1, lp.epsilon)

            # executing a random action
            reward, done = env.execute_action(a)
            o2_events = env.get_events()
            o2_features = env.get_features()
            u2 = rm.get_next_state(u1, o2_events)

            # updating the number of steps and total reward
            trace.append((o2_events, reward))
            reward_total += reward
            step += 1

            # updating the current RM if needed
            rm.update_rewards(u1, o2_events, reward)
            if done: rm.add_terminal_observations(o2_events)
            if rm.is_observation_impossible(u1, o1_events, o2_events):
                # if o2 is impossible according to the current RM,
                # then the RM has a bug and must be relearned
                add_trace = True

            # Saving this transition
            policy.add_experience(o1_events, o1_features, u1, a, reward,
                                  o2_events, o2_features, u2, float(done))

            # Learning and updating the target networks (if needed)
            policy.learn_if_needed()

            # Testing
            if step % lp.test_freq == 0:
                print("Step: %d\tTrain: %0.1f" %
                      (step, reward_total - last_reward))
                train_rewards.append((step, reward_total - last_reward))
                last_reward = reward_total
                # finishing the experiment if the max number of learning steps was reached
                if policy._get_step() > lp.max_learning_steps:
                    finish_learning = True

            # checking if the episode finishes or the agent reaches the maximum number of training steps
            if done or lp.train_steps <= step or finish_learning:
                break

            # Moving to the next state
            o1_events, o1_features, u1 = o2_events, o2_features, u2

        # If the trace isn't correctly predicted by the reward machine,
        # we add the trace and relearn the machine
        if add_trace and step < lp.train_steps and not finish_learning:
            print("Relearning the reward machine...")
            rm.add_trace(trace)
            same_rm, info = rm.learn_the_reward_machine()
            rm_scores.append((step, ) + info)
            if not same_rm:
                # if the RM changed, we have to relearn all the q-values...
                policy.close()
                policy = None
            else:
                print("the new RM is not better than the current RM!!")
                #input()

    if policy is not None:
        policy.close()
        policy = None

    # return the trainig rewards
    return train_rewards, rm_scores, rm.get_info()
コード例 #6
0
ファイル: mouse_world.py プロジェクト: yanxi0830/LM-RM
def play():
    from tester.tester import Tester
    from tester.tester_params import TestingParameters
    from qrm.learning_params import LearningParameters
    from reward_machines.reward_machine import RewardMachine

    import os
    os.chdir("../")
    tester = Tester(LearningParameters(), TestingParameters(),
                    "../experiments/mouse/tests/mouse_0.txt")

    task = tester.get_task_rms()[1]
    params = tester.get_task_params(task).game_params
    max_x = params.max_x
    max_y = params.max_y
    game = MouseWorld(params)
    rm = RewardMachine(task)
    s1 = game.get_state()
    u1 = rm.get_initial_state()

    pygame.init()
    gameDisplay = pygame.display.set_mode((max_x, max_y))
    pygame.display.set_caption('Fake Keyboard')
    clock = pygame.time.Clock()
    crashed = False

    t_previous = time.time()
    actions = set()
    while not crashed:
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                crashed = True

            if event.type == pygame.KEYUP:
                if Actions.left in actions and event.key == pygame.K_LEFT:
                    actions.remove(Actions.left)
                if Actions.right in actions and event.key == pygame.K_RIGHT:
                    actions.remove(Actions.right)
                if Actions.up in actions and event.key == pygame.K_UP:
                    actions.remove(Actions.up)
                if Actions.down in actions and event.key == pygame.K_DOWN:
                    actions.remove(Actions.down)
                if Actions.jump in actions and event.key == pygame.K_SPACE:
                    actions.remove(Actions.jump)
            if event.type == pygame.KEYDOWN:
                if event.key == pygame.K_LEFT:
                    actions.add(Actions.left)
                if event.key == pygame.K_RIGHT:
                    actions.add(Actions.right)
                if event.key == pygame.K_UP:
                    actions.add(Actions.up)
                if event.key == pygame.K_DOWN:
                    actions.add(Actions.down)
                if event.key == pygame.K_SPACE:
                    actions.add(Actions.jump)

        t_current = time.time()
        t_delta = (t_current - t_previous)

        if len(actions) == 0:
            a = Actions.none
        else:
            a = random.choice(list(actions))

        # Executing the action
        game.execute_action(a.value, t_delta)

        s2 = game.get_state()
        events = game.get_true_propositions()
        u2 = rm.get_next_state(u1, events)
        reward = rm.get_reward(u1, u2, s1, a, s2)

        if reward > 0:
            print("REWARD ", reward)
        if rm.is_terminal_state(u2):
            print("Machine state:", u2, "(terminal)")
        else:
            print("Machine state:", u2)

        # Printing Image
        gameDisplay.fill(Colors.WHITE.value)
        for k in game.keyboard_keys:
            k.draw_on_display(gameDisplay)
        game.agent.draw_on_display(gameDisplay)
        game.draw_current_text_on_display(gameDisplay)

        pygame.display.update()
        clock.tick(20)

        t_previous = t_current
        s1, u1 = s2, u2

    pygame.quit()