def test_joblib_pickle(self): reg1 = self.regressor_class(**self.kwargs) reg1.fit(self.X_train, self.y_train) y_pred1 = reg1.predict(self.X_test) joblib.dump(reg1, 'test_reg.pkl') # Remove model file cleanup() reg2 = joblib.load('test_reg.pkl') y_pred2 = reg2.predict(self.X_test) np.testing.assert_allclose(y_pred1, y_pred2)
def test_pickle(self): reg1 = self.regressor_class(**self.kwargs) reg1.fit(self.X_train, self.y_train) y_pred1 = reg1.predict(self.X_test) s = pickle.dumps(reg1) # Remove model file cleanup() reg2 = pickle.loads(s) y_pred2 = reg2.predict(self.X_test) np.testing.assert_allclose(y_pred1, y_pred2)
def test_joblib_pickle(self): clf1 = self.classifier_class(**self.kwargs) clf1.fit(self.X_train, self.y_train) y_pred1 = clf1.predict(self.X_test) joblib.dump(clf1, 'test_clf.pkl') # Remove model file cleanup() clf2 = joblib.load('test_clf.pkl') y_pred2 = clf2.predict(self.X_test) np.testing.assert_allclose(y_pred1, y_pred2)
def test_pickle(self): clf1 = self.classifier_class(**self.kwargs) clf1.fit(self.X_train, self.y_train) y_pred1 = clf1.predict(self.X_test) s = pickle.dumps(clf1) # Remove model file cleanup() clf2 = pickle.loads(s) y_pred2 = clf2.predict(self.X_test) np.testing.assert_allclose(y_pred1, y_pred2)
def test_joblib_pickle(self): est1 = self.estimator_class(**self.kwargs) est1.fit(self.X_train, self.y_train) y_pred1 = est1.predict(self.X_test) joblib.dump(est1, 'test_est.pkl') # Remove model file cleanup() est2 = joblib.load('test_est.pkl') y_pred2 = est2.predict(self.X_test) np.testing.assert_allclose(y_pred1, y_pred2)
def test_pickle(self): est1 = self.estimator_class(**self.kwargs) est1.fit(self.X_train, self.y_train) y_pred1 = est1.predict(self.X_test) s = pickle.dumps(est1) # Remove model file cleanup() est2 = pickle.loads(s) y_pred2 = est2.predict(self.X_test) np.testing.assert_allclose(y_pred1, y_pred2)