コード例 #1
0
ファイル: evidence.py プロジェクト: eggduzao/reg-gen
    def create_file(self):
        # Expanding summits
        tfbs_summit_regions = GenomicRegionSet("TFBS Summit Regions")
        tfbs_summit_regions.read_bed(self.tfbs_summit_fname)

        for region in iter(tfbs_summit_regions):
            summit = int(region.data.split()[-1]) + region.initial
            region.initial = max(summit - (self.peak_ext / 2), 0)
            region.final = summit + (self.peak_ext / 2)

        # Calculating intersections
        mpbs_regions = GenomicRegionSet("MPBS Regions")
        mpbs_regions.read_bed(self.mpbs_fname)

        tfbs_summit_regions.sort()
        mpbs_regions.sort()

        with_overlap_regions = mpbs_regions.intersect(tfbs_summit_regions, mode=OverlapType.ORIGINAL)
        without_overlap_regions = mpbs_regions.subtract(tfbs_summit_regions, whole_region=True)
        tfbs_regions = GenomicRegionSet("TFBS Regions")

        for region in iter(with_overlap_regions):
            region.name = region.name.split(":")[0] + ":Y"
            tfbs_regions.add(region)

        for region in iter(without_overlap_regions):
            region.name = region.name.split(":")[0] + ":N"
            tfbs_regions.add(region)

        tfbs_regions.sort()

        tfbs_fname = os.path.join(self.output_location, "{}.bed".format(self.mpbs_name))
        tfbs_regions.write_bed(tfbs_fname)
コード例 #2
0
ファイル: triplexTools.py プロジェクト: rafalcode/reg-gen
def merge_DBD_regions(path):
    """Merge all available DBD regions in BED format. """

    for t in os.listdir(path):
        if os.path.isdir(os.path.join(path, t)):
            dbd_pool = GenomicRegionSet(t)
            for rna in os.listdir(os.path.join(path,t)):
                f = os.path.join(path, t, rna, "DBD_"+rna+".bed")
                if os.path.exists(f):
                    dbd = GenomicRegionSet(rna)
                    dbd.read_bed(f)
                    for r in dbd: r.name = rna+"_"+r.name
                    dbd_pool.combine(dbd)
            dbd_pool.write_bed(os.path.join(path, t, "DBD_"+t+".bed"))
コード例 #3
0
    def create_file(self):
        # Expanding summits
        tfbs_summit_regions = GenomicRegionSet("TFBS Summit Regions")
        tfbs_summit_regions.read_bed(self.tfbs_summit_fname)

        for region in iter(tfbs_summit_regions):
            summit = int(region.data.split()[-1]) + region.initial
            region.initial = max(summit - (self.peak_ext / 2), 0)
            region.final = summit + (self.peak_ext / 2)

        # Calculating intersections
        mpbs_regions = GenomicRegionSet("MPBS Regions")
        mpbs_regions.read_bed(self.mpbs_fname)

        tfbs_summit_regions.sort()
        mpbs_regions.sort()

        with_overlap_regions = mpbs_regions.intersect(
            tfbs_summit_regions, mode=OverlapType.ORIGINAL)
        without_overlap_regions = mpbs_regions.subtract(tfbs_summit_regions,
                                                        whole_region=True)
        tfbs_regions = GenomicRegionSet("TFBS Regions")

        for region in iter(with_overlap_regions):
            region.name = region.name.split(":")[0] + ":Y"
            tfbs_regions.add(region)

        for region in iter(without_overlap_regions):
            region.name = region.name.split(":")[0] + ":N"
            tfbs_regions.add(region)

        tfbs_regions.sort()

        tfbs_fname = os.path.join(self.output_location,
                                  "{}.bed".format(self.mpbs_name))
        tfbs_regions.write_bed(tfbs_fname)
コード例 #4
0
ファイル: tdf_regiontest.py プロジェクト: rafalcode/reg-gen
class RandomTest:
    def __init__(self,
                 rna_fasta,
                 rna_name,
                 dna_region,
                 organism,
                 showdbs=False):
        self.organism = organism
        genome = GenomeData(organism)
        self.genome_path = genome.get_genome()
        # RNA: Path to the FASTA file
        self.rna_fasta = rna_fasta
        self.showdbs = showdbs

        rnas = SequenceSet(name="rna", seq_type=SequenceType.RNA)
        rnas.read_fasta(self.rna_fasta)
        if rna_name:
            self.rna_name = rna_name
        else:
            self.rna_name = rnas[0].name

        # DNA: GenomicRegionSet
        self.dna_region = GenomicRegionSet(name="target")
        self.dna_region.read_bed(dna_region)
        self.dna_region = self.dna_region.gene_association(
            organism=self.organism, show_dis=True)

        self.topDBD = []
        self.stat = OrderedDict(name=rna_name, genome=organism)
        self.stat["target_regions"] = str(len(self.dna_region))

    def get_rna_region_str(self, rna):
        """Getting the rna region from the information header with the pattern:
                REGION_chr3_51978050_51983935_-_"""
        self.rna_regions = get_rna_region_str(rna)
        if self.rna_regions and len(self.rna_regions[0]) == 5:
            self.rna_expression = float(self.rna_regions[0][-1])
        else:
            self.rna_expression = "n.a."

    def connect_rna(self, rna, temp):
        d = connect_rna(rna, temp, self.rna_name)
        self.stat["exons"] = str(d[0])
        self.stat["seq_length"] = str(d[1])
        self.rna_len = d[1]

    def target_dna(self,
                   temp,
                   remove_temp,
                   cutoff,
                   l,
                   e,
                   c,
                   fr,
                   fm,
                   of,
                   mf,
                   par,
                   obed=False):
        """Calculate the true counts of triplexes on the given dna regions"""
        self.triplexator_p = [l, e, c, fr, fm, of, mf]

        txp = find_triplex(rna_fasta=os.path.join(temp, "rna_temp.fa"),
                           dna_region=self.dna_region,
                           temp=temp,
                           organism=self.organism,
                           remove_temp=remove_temp,
                           l=l,
                           e=e,
                           c=c,
                           fr=fr,
                           fm=fm,
                           of=of,
                           mf=mf,
                           par=par,
                           genome_path=self.genome_path,
                           prefix="targeted_region",
                           dna_fine_posi=False)
        txp.merge_rbs(rm_duplicate=True,
                      region_set=self.dna_region,
                      asgene_organism=self.organism,
                      cutoff=cutoff)
        self.txp = txp
        self.stat["DBSs_target_all"] = str(len(self.txp))
        txp.remove_duplicates()
        self.rbss = txp.merged_dict.keys()
        # if len(self.rbss) == 0:
        #     print("ERROR: No potential binding event. Please change the parameters.")
        #     sys.exit(1)

        txpf = find_triplex(rna_fasta=os.path.join(temp, "rna_temp.fa"),
                            dna_region=self.dna_region,
                            temp=temp,
                            organism=self.organism,
                            remove_temp=remove_temp,
                            l=l,
                            e=e,
                            c=c,
                            fr=fr,
                            fm=fm,
                            of=of,
                            mf=mf,
                            par=par,
                            genome_path=self.genome_path,
                            prefix="dbs",
                            dna_fine_posi=True)
        txpf.remove_duplicates()
        txpf.merge_rbs(rbss=self.rbss,
                       rm_duplicate=True,
                       asgene_organism=self.organism)
        self.txpf = txpf

        self.stat["DBSs_target_all"] = str(len(self.txpf))

        self.counts_tr = OrderedDict()
        self.counts_dbs = OrderedDict()

        for rbs in self.rbss:
            tr = len(self.txp.merged_dict[rbs])
            self.counts_tr[rbs] = [tr, len(self.dna_region) - tr]
            self.counts_dbs[rbs] = len(self.txpf.merged_dict[rbs])

        self.region_dbd = self.txpf.sort_rbs_by_regions(self.dna_region)

        self.region_dbs = self.txpf.sort_rd_by_regions(
            regionset=self.dna_region)
        self.region_dbsm = {}
        self.region_coverage = {}

        for region in self.dna_region:
            self.region_dbsm[region.toString()] = self.region_dbs[
                region.toString()].get_dbs().merge(w_return=True)
            self.region_coverage[region.toString()] = float(self.region_dbsm[region.toString()].total_coverage()) / len \
                (region)
        self.stat["target_regions"] = str(len(self.dna_region))

        if obed:
            # btr = self.txp.get_dbs()
            # btr = btr.gene_association(organism=self.organism, show_dis=True)
            # btr.write_bed(os.path.join(temp, obed + "_target_region_dbs.bed"))
            # dbss = txpf.get_dbs()
            # dbss.write_bed(os.path.join(temp, obed + "_dbss.bed"))

            # output = self.dna_region.gene_association(organism=self.organism, show_dis=True)

            self.txp.write_bed(filename=os.path.join(
                temp, obed + "_target_region_dbs.bed"),
                               dbd_tag=False,
                               remove_duplicates=False,
                               associated=self.organism)
            self.txpf.write_bed(filename=os.path.join(temp,
                                                      obed + "_dbss.bed"),
                                remove_duplicates=False)

    def random_test(self, repeats, temp, remove_temp, l, e, c, fr, fm, of, mf,
                    rm, par, filter_bed, alpha):
        """Perform randomization for the given times"""
        self.repeats = repeats
        marks = numpy.round(numpy.linspace(0, repeats - 1, num=41)).tolist()
        print("random_test")
        print(par)
        # Prepare the input lists for multiprocessing
        mp_input = []
        for i in range(repeats):
            mp_input.append([
                str(i),
                os.path.join(temp, "rna_temp.fa"), self.dna_region, temp,
                self.organism, self.rbss,
                str(marks.count(i)),
                str(l),
                str(e),
                str(c),
                str(fr),
                str(fm),
                str(of),
                str(mf),
                str(rm), filter_bed, self.genome_path, par
            ])
        # Multiprocessing
        print("\t\t|0%                  |                100%|")
        print("\t\t[", end="")
        pool = multiprocessing.Pool(processes=multiprocessing.cpu_count() - 2)
        mp_output = pool.map(random_each, mp_input)
        # print(mp_output)
        pool.close()
        pool.join()
        print("]")

        # Processing the result
        self.region_matrix = []
        self.dbss_matrix = []
        self.data = {
            "region": {
                "ave": [],
                "sd": [],
                "p": [],
                "sig_region": [],
                "sig_boolean": []
            },
            "dbs": {
                "ave": [],
                "sd": [],
                "p": [],
                "sig_region": [],
                "sig_boolean": []
            }
        }

        region_counts = [v[0] for v in mp_output]
        dbss_counts = [v[1] for v in mp_output]

        for i, rbs in enumerate(self.rbss):

            counts_regions = [v[i] for v in region_counts]

            self.data["region"]["ave"].append(numpy.mean(counts_regions))
            self.data["region"]["sd"].append(numpy.std(counts_regions))
            num_sig = len(
                [h for h in counts_regions if h > self.counts_tr[rbs][0]])
            p_region = float(num_sig) / repeats
            self.data["region"]["p"].append(p_region)
            self.region_matrix.append(counts_regions)

            if p_region < alpha:
                self.data["region"]["sig_region"].append(rbs)
                self.data["region"]["sig_boolean"].append(True)
            else:
                self.data["region"]["sig_boolean"].append(False)

            try:
                if p_region < self.topDBD[1]:
                    self.topDBD = [rbs.str_rna(pa=False), p_region]
            except:
                self.topDBD = [rbs.str_rna(pa=False), p_region]

            # Analysis based on DBSs
            if self.showdbs:
                counts_dbss = [v[i] for v in dbss_counts]

                self.data["dbs"]["ave"].append(numpy.mean(counts_dbss))
                self.data["dbs"]["sd"].append(numpy.std(counts_dbss))
                num_sig = len(
                    [h for h in counts_dbss if h > self.counts_dbs[rbs]])
                p_dbs = float(num_sig) / repeats
                self.data["dbs"]["p"].append(p_dbs)
                self.dbss_matrix.append(counts_dbss)
                if p_dbs < alpha:
                    self.data["dbs"]["sig_region"].append(rbs)
                    self.data["dbs"]["sig_boolean"].append(True)
                else:
                    self.data["dbs"]["sig_boolean"].append(False)
            try:
                self.stat["p_value"] = str(min(self.data["region"]["p"]))
            except:
                self.stat["p_value"] = "1"

        self.region_matrix = numpy.array(self.region_matrix)

        if self.showdbs: self.dbss_matrix = numpy.array(self.dbss_matrix)

        counts_dbss = [v[i] for v in dbss_counts]
        self.stat["DBSs_random_ave"] = numpy.mean(counts_dbss)
        try:
            self.stat["p_value"] = str(min(self.data["region"]["p"]))
        except:
            self.stat["p_value"] = "1"

    def dbd_regions(self, sig_region, output):
        """Generate the BED file of significant DBD regions and FASTA file of the sequences"""
        dbd_regions(exons=self.rna_regions,
                    sig_region=sig_region,
                    rna_name=self.rna_name,
                    output=output)

        self.stat["DBD_all"] = str(len(self.rbss))
        self.stat["DBD_sig"] = str(len(self.data["region"]["sig_region"]))

        sigDBD = GenomicRegionSet("DBD_sig")
        sigDBD.sequences = self.data["region"]["sig_region"]
        rbss = self.txp.get_rbs()
        overlaps = rbss.intersect(y=sigDBD, mode=OverlapType.ORIGINAL)
        self.stat["DBSs_target_DBD_sig"] = str(len(overlaps))

    def lineplot(self, txp, dirp, ac, cut_off, log, ylabel, linelabel, showpa,
                 sig_region, filename):
        """Generate lineplot for RNA"""

        lineplot(txp=txp,
                 rnalen=self.rna_len,
                 rnaname=self.rna_name,
                 dirp=dirp,
                 sig_region=sig_region,
                 cut_off=cut_off,
                 log=log,
                 ylabel=ylabel,
                 linelabel=linelabel,
                 filename=filename,
                 ac=ac,
                 showpa=showpa)

    def boxplot(self, dir, matrix, sig_region, truecounts, sig_boolean, ylabel,
                filename):
        """Generate the visualized plot"""
        tick_size = 8
        label_size = 9

        f, ax = plt.subplots(1, 1, dpi=300, figsize=(6, 4))
        max_y = int(max([matrix.max()] + truecounts) * 1.1) + 1
        min_y = max(int(matrix.min() * 0.9) - 1, 0)

        # Significant DBD
        rect = patches.Rectangle(xy=(1, 0),
                                 width=0.8,
                                 height=max_y,
                                 facecolor=sig_color,
                                 edgecolor="none",
                                 alpha=0.5,
                                 lw=None,
                                 label="Significant DBD")
        for i, r in enumerate(sig_boolean):
            if r:
                rect = patches.Rectangle(xy=(i + 0.6, min_y),
                                         width=0.8,
                                         height=max_y,
                                         facecolor=sig_color,
                                         edgecolor="none",
                                         alpha=0.5,
                                         lw=None,
                                         label="Significant DBD")
                ax.add_patch(rect)

        # Plotting

        bp = ax.boxplot(matrix.transpose(),
                        notch=False,
                        sym='o',
                        vert=True,
                        whis=1.5,
                        positions=None,
                        widths=None,
                        patch_artist=True,
                        bootstrap=None)
        z = 10
        plt.setp(bp['boxes'], color=nontarget_color, alpha=1, edgecolor="none")
        plt.setp(bp['whiskers'],
                 color='black',
                 linestyle='-',
                 linewidth=1,
                 zorder=z,
                 alpha=1)
        plt.setp(bp['fliers'],
                 markerfacecolor='gray',
                 color='white',
                 alpha=0.3,
                 markersize=1.8,
                 zorder=z)
        plt.setp(bp['caps'], color='white', zorder=-1)
        plt.setp(bp['medians'], color='black', linewidth=1.5, zorder=z + 1)

        # Plot target regions
        plt.plot(range(1,
                       len(self.rbss) + 1),
                 truecounts,
                 markerfacecolor=target_color,
                 marker='o',
                 markersize=5,
                 linestyle='None',
                 markeredgecolor="white",
                 zorder=z + 5)

        ax.set_xlabel(self.rna_name + " DNA Binding Domains",
                      fontsize=label_size)
        ax.set_ylabel(ylabel, fontsize=label_size, rotation=90)

        ax.set_ylim([min_y, max_y])
        ax.yaxis.set_major_locator(MaxNLocator(integer=True))

        ax.set_xticklabels([dbd.str_rna(pa=False) for dbd in self.rbss],
                           rotation=35,
                           ha="right",
                           fontsize=tick_size)
        for tick in ax.yaxis.get_major_ticks():
            tick.label.set_fontsize(tick_size)

        for spine in ['top', 'right']:
            ax.spines[spine].set_visible(False)
        ax.tick_params(axis='x',
                       which='both',
                       bottom='off',
                       top='off',
                       labelbottom='on')
        ax.tick_params(axis='y',
                       which='both',
                       left='on',
                       right='off',
                       labelbottom='off')

        # Legend
        dot_legend, = plt.plot([1, 1],
                               color=target_color,
                               marker='o',
                               markersize=5,
                               markeredgecolor="white",
                               linestyle='None')
        bp_legend, = plt.plot([1, 1],
                              color=nontarget_color,
                              linewidth=6,
                              alpha=1)

        ax.legend([dot_legend, bp_legend, rect],
                  ["Target Regions", "Non-target regions", "Significant DBD"],
                  bbox_to_anchor=(0., 1.02, 1., .102),
                  loc=2,
                  mode="expand",
                  borderaxespad=0.,
                  prop={'size': 9},
                  ncol=3,
                  numpoints=1)
        bp_legend.set_visible(False)
        dot_legend.set_visible(False)

        # f.tight_layout(pad=1.08, h_pad=None, w_pad=None)
        f.savefig(os.path.join(dir, filename + ".png"),
                  facecolor='w',
                  edgecolor='w',
                  bbox_extra_artists=(plt.gci()),
                  bbox_inches='tight',
                  dpi=300)
        # PDF
        for tick in ax.xaxis.get_major_ticks():
            tick.label.set_fontsize(12)
        for tick in ax.yaxis.get_major_ticks():
            tick.label.set_fontsize(12)
        ax.xaxis.label.set_size(14)
        ax.yaxis.label.set_size(14)

        pp = PdfPages(os.path.join(dir, filename + '.pdf'))
        pp.savefig(f, bbox_extra_artists=(plt.gci()), bbox_inches='tight')
        pp.close()

    def gen_html(self,
                 directory,
                 parameters,
                 obed,
                 align=50,
                 alpha=0.05,
                 score=False):
        """Generate the HTML file"""
        dir_name = os.path.basename(directory)
        html_header = "Genomic Region Test: " + dir_name
        link_ds = OrderedDict()
        link_ds["RNA"] = "index.html"
        link_ds["Sig Target Regions"] = "starget_regions.html"
        link_ds["Target Regions"] = "target_regions.html"
        link_ds["Parameters"] = "parameters.html"

        ##################################################
        # index.html

        html = Html(
            name=html_header,
            links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
            fig_rpath="../style",
            RGT_header=False,
            other_logo="TDF",
            homepage="../index.html")
        # Plots
        html.add_figure("lineplot_region.png",
                        align="left",
                        width="45%",
                        more_images=["boxplot_regions.png"])
        if self.showdbs:
            html.add_figure("lineplot_dbs.png",
                            align="left",
                            width="45%",
                            more_images=["boxplot_dbs.png"])

        if self.showdbs:
            header_list = [[
                "#", "DBD", "Target Regions", None, "Non-target Regions", None,
                "Statistics", "Target Regions", "Non-target Regions", None,
                "Statistics"
            ],
                           [
                               "", "", "with DBS", "without DBS",
                               "with DBS (average)", "s.d.", "<i>p</i>-value",
                               "NO. DBSs", "NO. DBSs (average)", "s.d.",
                               "<i>p</i>-value"
                           ]]
            header_titles = [
                [
                    "Rank", "DNA Binding Domain",
                    "Given target regions on DNA", None,
                    "Regions from randomization", None,
                    "Statistics based on target regions",
                    "Given target regions on DNA",
                    "Regions from randomization", None,
                    "Statistics based on DNA Binding Sites"
                ],
                [
                    "", "", "Number of target regions with DBS binding",
                    "Number of target regions without DBS binding",
                    "Average number of regions from randomization with DBS binding",
                    "Standard deviation", "P value",
                    "Number of related DNA Binding Sites binding to target regions",
                    "Average number of DNA Binding Sites binding to random regions",
                    "Standard deviation", "P-value"
                ]
            ]
            border_list = [
                " style=\"border-right:1pt solid gray\"",
                " style=\"border-right:1pt solid gray\"", "",
                " style=\"border-right:1pt solid gray\"", "",
                " style=\"border-right:1pt solid gray\"",
                " style=\"border-right:2pt solid gray\"",
                " style=\"border-right:1pt solid gray\"", "",
                " style=\"border-right:1pt solid gray\"",
                " style=\"border-right:1pt solid gray\""
            ]
        else:
            header_list = [[
                "#", "DBD", "Target Regions", None, "Non-target Regions", None,
                "Statistics", None
            ],
                           [
                               "", "", "with DBS", "without DBS",
                               "with DBS (average)", "s.d.", "<i>p</i>-value",
                               "z-score"
                           ]]
            header_titles = [
                [
                    "Rank", "DNA Binding Domain",
                    "Given target regions on DNA", None,
                    "Regions from randomization", None,
                    "Statistics based on target regions", None
                ],
                [
                    "", "", "Number of target regions with DBS binding",
                    "Number of target regions without DBS binding",
                    "Average number of regions from randomization with DBS binding",
                    "Standard deviation", "P value", "Z-score"
                ]
            ]
            border_list = [
                " style=\"border-right:1pt solid gray\"",
                " style=\"border-right:1pt solid gray\"", "",
                " style=\"border-right:1pt solid gray\"", "",
                " style=\"border-right:1pt solid gray\"",
                " style=\"border-right:1pt solid gray\"", ""
            ]

        type_list = 'ssssssssssssssss'
        col_size_list = [
            50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50
        ]
        data_table = []

        for i, rbs in enumerate(self.rbss):
            if self.data["region"]["p"][i] < alpha:
                p_region = "<font color=\"red\">" + value2str(
                    self.data["region"]["p"][i]) + "</font>"

            else:
                p_region = value2str(self.data["region"]["p"][i])
            zs = (self.counts_tr[rbs][0] -
                  self.data["region"]["ave"][i]) / self.data["region"]["sd"][i]
            new_line = [
                str(i + 1),
                rbs.str_rna(pa=False), '<a href="dbd_region.html#' +
                rbs.str_rna() + '" style="text-align:left">' +
                str(self.counts_tr[rbs][0]) + '</a>',
                str(self.counts_tr[rbs][1]),
                value2str(self.data["region"]["ave"][i]),
                value2str(self.data["region"]["sd"][i]), p_region,
                value2str(zs)
            ]
            if self.showdbs:
                if self.data["dbs"]["p"][i] < alpha:
                    p_dbs = "<font color=\"red\">" + value2str(
                        self.data["dbs"]["p"][i]) + "</font>"
                else:
                    p_dbs = value2str(self.data["dbs"]["p"][i])

                new_line += [
                    str(self.counts_dbs[rbs]),
                    value2str(self.data["dbs"]["ave"][i]),
                    value2str(self.data["dbs"]["sd"][i]), p_dbs
                ]
            data_table.append(new_line)

        data_table = natsort.natsorted(data_table, key=lambda x: x[6])
        html.add_zebra_table(header_list,
                             col_size_list,
                             type_list,
                             data_table,
                             align=align,
                             cell_align="left",
                             auto_width=True,
                             header_titles=header_titles,
                             border_list=border_list,
                             sortable=True)

        html.add_heading("Notes")
        html.add_list([
            "RNA name: " + self.rna_name,
            "Randomization is performed for " + str(self.repeats) + " times.",
            "DBD stands for DNA Binding Domain on RNA.",
            "DBS stands for DNA Binding Site on DNA."
        ])
        html.add_fixed_rank_sortable()
        html.write(os.path.join(directory, "index.html"))

        #############################################################
        # RNA subpage: Profile of targeted regions for each merged DNA Binding Domain
        #############################################################

        header_list = [
            "#", "Target Region", "Associated Gene", "No. of DBSs",
            "DBS coverage"
        ]
        header_titles = [
            "Rank", "Given target regions from BED files",
            "Associated genes which is overlapping with the given region or close to it (less than 50000 bp)",
            "Number of DNA Binding Sites locate within the region",
            "The proportion of the region covered by DBS binding"
        ]

        #########################################################
        # dbd_region.html
        html = Html(
            name=html_header,
            links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
            fig_rpath="../style",
            RGT_header=False,
            other_logo="TDF",
            homepage="../index.html")

        for rbsm in self.rbss:
            html.add_heading("DNA Binding Domain: " + rbsm.str_rna(),
                             idtag=rbsm.str_rna())
            data_table = []
            for i, region in enumerate(self.txp.merged_dict[rbsm]):
                # Add information
                data_table.append([
                    str(i + 1),
                    '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' +
                    self.organism + "&position=" + region.chrom + "%3A" +
                    str(region.initial) + "-" + str(region.final) +
                    '" style="text-align:left">' +
                    region.toString(space=True) + '</a>',
                    split_gene_name(gene_name=region.name, org=self.organism),
                    str(len(self.region_dbs[region.toString()])),
                    value2str(self.region_coverage[region.toString()])
                ])

            html.add_zebra_table(header_list,
                                 col_size_list,
                                 type_list,
                                 data_table,
                                 align=align,
                                 cell_align="left",
                                 auto_width=True,
                                 header_titles=header_titles,
                                 sortable=True)
        html.add_fixed_rank_sortable()
        html.write(os.path.join(directory, "dbd_region.html"))

        #############################################################
        # Targeted regions centered
        #############################################################

        ##############################################################################################
        # target_regions.html
        html = Html(
            name=html_header,
            links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
            fig_rpath="../style",
            RGT_header=False,
            other_logo="TDF",
            homepage="../index.html")

        if score:
            header_list = [
                "#", "Target region", "Associated Gene", "DBSs Count",
                "DBS coverage", "Score", "Sum of ranks"
            ]
            header_titles = [
                "Rank", "Target regions loaded from the given BED file",
                "Associated genes which is overlapping with the given region or close to it (less than 50000 bp)",
                "Number of DNA Binding Sites within the region",
                "The proportion of the region covered by DBS binding",
                "Scores from BED file", "Sum of all the left-hand-side ranks"
            ]
        else:
            header_list = [
                "#", "Target region", "Associated Gene", "DBSs Count",
                "DBS coverage", "Sum of ranks"
            ]
            header_titles = [
                "Rank", "Target regions loaded from the given BED file",
                "Associated genes which is overlapping with the given region or close to it (less than 50000 bp)",
                "Number of DNA Binding Sites within the region",
                "The proportion of the region covered by DBS binding",
                "Sum of all the left-hand-side ranks"
            ]
        html.add_heading("Target Regions")
        data_table = []

        if not self.dna_region.sorted: self.dna_region.sort()

        # Calculate the ranking
        rank_count = len(self.dna_region) - rank_array(
            [len(self.region_dbs[p.toString()]) for p in self.dna_region])
        rank_coverage = len(self.dna_region) - rank_array(
            [self.region_coverage[p.toString()] for p in self.dna_region])

        if score:
            try:
                score_list = [
                    float(p.data.split("\t")[0]) for p in self.dna_region
                ]
                rank_score = len(self.dna_region) - rank_array(
                    [abs(s) for s in score_list])
                rank_sum = [
                    x + y + z
                    for x, y, z in zip(rank_count, rank_coverage, rank_score)
                ]
                # sum_rank = rank_array(rank_sum)  # method='min'
            except ImportError:
                print(
                    "There is no score in BED file, please don't use '-score' argument."
                )
        else:
            rank_sum = [x + y for x, y in zip(rank_count, rank_coverage)]
            sum_rank = rank_array(rank_sum)

        for i, region in enumerate(self.dna_region):
            dbs_counts = str(len(self.region_dbs[region.toString()]))
            dbs_cover = value2str(self.region_coverage[region.toString()])

            newline = [
                str(i + 1),
                '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' +
                self.organism + "&position=" + region.chrom + "%3A" +
                str(region.initial) + "-" + str(region.final) +
                '" style="text-align:left">' + region.toString(space=True) +
                '</a>',
                split_gene_name(gene_name=region.name, org=self.organism),
                '<a href="region_dbs.html#' + region.toString() +
                '" style="text-align:left">' + dbs_counts + '</a>', dbs_cover
            ]

            if score:
                dbs_score = value2str(score_list[i])
                region.data = "\t".join(
                    [dbs_counts, dbs_cover, dbs_score,
                     str(rank_sum[i])])
                newline.append(dbs_score)
                newline.append(str(rank_sum[i]))
            else:
                region.data = "\t".join(
                    [dbs_counts, dbs_cover,
                     str(rank_sum[i])])
                newline.append(str(rank_sum[i]))
            data_table.append(newline)

        data_table = natsort.natsorted(data_table, key=lambda x: x[-1])
        # data_table = sorted(data_table, key=lambda x: x[-1])
        html.add_zebra_table(header_list,
                             col_size_list,
                             type_list,
                             data_table,
                             align=align,
                             cell_align="left",
                             auto_width=True,
                             header_titles=header_titles,
                             sortable=True)
        html.add_heading("Notes")
        html.add_list(["All target regions without any bindings are ignored."])
        html.add_fixed_rank_sortable()
        html.write(os.path.join(directory, "target_regions.html"))

        self.dna_region.sort_score()
        self.dna_region.write_bed(
            os.path.join(directory, obed + "_target_regions.bed"))

        ##############################################################################################
        # starget_regions.html    for significant target regions

        stargets = GenomicRegionSet("sig_targets")
        sig_dbs = {}
        sig_dbs_coverage = {}
        for i, r in enumerate(self.dna_region):
            sig_bindings = self.region_dbs[r.toString()].overlap_rbss(
                rbss=self.data["region"]["sig_region"])
            dbs = sig_bindings.get_dbs()
            if len(dbs) > 0:
                stargets.add(r)
                m_dbs = dbs.merge(w_return=True)
                sig_dbs[r] = len(dbs)
                # self.promoter["de"]["merged_dbs"][promoter.toString()] = len(m_dbs)
                sig_dbs_coverage[r] = float(m_dbs.total_coverage()) / len(r)

        html = Html(
            name=html_header,
            links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
            fig_rpath="../style",
            RGT_header=False,
            other_logo="TDF",
            homepage="../index.html")

        # Select promoters in sig DBD
        if len(self.data["region"]["sig_region"]) == 0:
            html.add_heading("There is no significant DBD.")
        else:
            html.add_heading("Target regions bound by significant DBD")
            data_table = []
            # Calculate the ranking
            rank_count = len(stargets) - rank_array(
                [sig_dbs[p] for p in stargets])
            rank_coverage = len(stargets) - rank_array(
                [sig_dbs_coverage[p] for p in stargets])
            if score:
                score_list = [float(p.data.split("\t")[0]) for p in stargets]
                rank_score = len(stargets) - rank_array(
                    [abs(s) for s in score_list])
                rank_sum = [
                    x + y + z
                    for x, y, z in zip(rank_count, rank_coverage, rank_score)
                ]
                sum_rank = rank_array(rank_sum)  # method='min'
            else:
                rank_sum = [x + y for x, y in zip(rank_count, rank_coverage)]
                sum_rank = rank_array(rank_sum)

            for i, region in enumerate(stargets):
                dbssount = '<a href="region_dbs.html#' + region.toString() + \
                           '" style="text-align:left">' + str(sig_dbs[region]) + '</a>'

                region_link = region_link_internet(self.organism, region)

                newline = [
                    str(i + 1), region_link,
                    split_gene_name(gene_name=region.name, org=self.organism),
                    dbssount,
                    value2str(sig_dbs_coverage[region])
                ]
                if score:
                    dbs_score = value2str(score_list[i])
                    # region.data = "\t".join([dbs_counts, dbs_cover, dbs_score, str(sum_rank[i])])
                    newline.append(dbs_score)
                    newline.append(str(rank_sum[i]))
                    # print([dbs_score, str(sum_rank[i])])
                else:
                    # region.data = "\t".join([dbs_counts, dbs_cover, str(sum_rank[i])])
                    newline.append(str(rank_sum[i]))

                # newline += ["<i>" + str(rank_sum[i]) + "</i>"]
                # print(newline)
                data_table.append(newline)

            # print(data_table)
            # data_table = sorted(data_table, key=lambda x: x[-1])
            data_table = natsort.natsorted(data_table, key=lambda x: x[-1])
            html.add_zebra_table(header_list,
                                 col_size_list,
                                 type_list,
                                 data_table,
                                 align=align,
                                 cell_align="left",
                                 header_titles=header_titles,
                                 border_list=None,
                                 sortable=True)
            html.add_heading("Notes")
            html.add_list([
                "DBS stands for DNA Binding Site on DNA.",
                "DBS coverage is the proportion of the region where has potential to form triple helices with the given RNA."
            ])
            html.add_fixed_rank_sortable()
            html.write(os.path.join(directory, "starget_regions.html"))

        ############################
        # Subpages for targeted region centered page
        # region_dbs.html
        header_list = ["RBS", "DBS", "Strand", "Score", "Motif", "Orientation"]

        html = Html(
            name=html_header,
            links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
            fig_rpath="../style",
            RGT_header=False,
            other_logo="TDF",
            homepage="../index.html")

        for i, region in enumerate(self.dna_region):
            if len(self.region_dbs[region.toString()]) == 0:
                continue
            else:
                html.add_heading(
                    "Associated gene: " +
                    split_gene_name(gene_name=region.name, org=self.organism),
                    idtag=region.toString())
                html.add_free_content([
                    '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' +
                    self.organism + "&position=" + region.chrom + "%3A" +
                    str(region.initial) + "-" + str(region.final) +
                    '" style="margin-left:50">' + region.toString(space=True) +
                    '</a>'
                ])
                data_table = []
                for rd in self.region_dbs[region.toString()]:
                    rbs = rd.rna.str_rna(pa=False)
                    for rbsm in self.data["region"]["sig_region"]:
                        # rbsm = rbsm.partition(":")[2].split("-")
                        if rd.rna.overlap(rbsm):
                            rbs = "<font color=\"red\">" + rbs + "</font>"
                    data_table.append([
                        rbs,
                        '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db='
                        + self.organism + "&position=" + rd.dna.chrom + "%3A" +
                        str(rd.dna.initial) + "-" + str(rd.dna.final) +
                        '" style="text-align:left">' +
                        rd.dna.toString(space=True) + '</a>',
                        rd.dna.orientation, rd.score, rd.motif, rd.orient
                    ])
                html.add_zebra_table(header_list,
                                     col_size_list,
                                     type_list,
                                     data_table,
                                     align=align,
                                     cell_align="left",
                                     auto_width=True)
        html.write(os.path.join(directory, "region_dbs.html"))

        ###############################################################################33
        ################ Parameters.html

        html = Html(
            name=html_header,
            links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
            fig_rpath="../style",
            RGT_header=False,
            other_logo="TDF",
            homepage="../index.html")
        html.add_heading("Parameters")
        header_list = ["Description", "Arguments", "Value"]

        data_table = [
            ["RNA sequence name", "-rn", parameters.rn],
            ["Input RNA sequence file", "-r",
             os.path.basename(parameters.r)],
            ["Input BED file", "-bed",
             os.path.basename(parameters.bed)],
            ["Output directory", "-o",
             os.path.basename(parameters.o)],
            ["Organism", "-organism", parameters.organism],
            ["Number of repitetion of andomization", "-n",
             str(parameters.n)],
            ["Alpha level for rejection p value", "-a",
             str(parameters.a)],
            [
                "Cut off value for filtering out the low counts of DBSs",
                "-ccf",
                str(parameters.ccf)
            ], ["Remove temporary files", "-rt",
                str(parameters.rt)],
            [
                "Input BED file for masking in randomization", "-f",
                str(parameters.f)
            ], ["Input file for RNA accecibility", "-ac",
                str(parameters.ac)],
            [
                "Cut off value for RNA accecibility", "-accf",
                str(parameters.accf)
            ],
            [
                "Output the BED files for DNA binding sites.", "-obed",
                str(parameters.obed)
            ],
            [
                "Show parallel and antiparallel bindings in the plot separately.",
                "-showpa",
                str(parameters.showpa)
            ], ["Minimum length", "-l",
                str(self.triplexator_p[0])],
            ["Maximum error rate", "-e",
             str(self.triplexator_p[1])],
            [
                "Tolerated number of consecutive errors", "-c",
                str(self.triplexator_p[2])
            ], ["Filtering repeats", "-fr",
                str(self.triplexator_p[3])],
            ["Filtering mode", "-fm",
             str(self.triplexator_p[4])],
            ["Output format", "-of",
             str(self.triplexator_p[5])],
            ["Merge features", "-mf",
             str(self.triplexator_p[6])]
        ]
        html.add_zebra_table(header_list,
                             col_size_list,
                             type_list,
                             data_table,
                             align=align,
                             cell_align="left",
                             auto_width=True)
        html.add_free_content(
            ['<a href="summary.txt" style="margin-left:100">See details</a>'])
        html.write(os.path.join(directory, "parameters.html"))
コード例 #5
0
ファイル: phylocsf_check.py プロジェクト: Marvin84/reg-gen
    new_alignment = MultipleSeqAlignment(records=seqs)
    #print(len(new_alignment))
            
    AlignIO.write(new_alignment, "mm9_"+rg.name+".fa", "fasta")

    process = subprocess.Popen(["/home/joseph/Apps/PhyloCSF/PhyloCSF", 
                                "29mammals", 
                                "mm9_"+rg.name+".fa", 
                                "--removeRefGaps",
                                "--strategy=omega",
                                "--orf=StopStop3",
                                "--minCodons=25",
                                "--frames=3"], 
                                stdout=subprocess.PIPE)
    out, err = process.communicate()
    print(out)
    #print(out.split("\t")[2])
    #print(out.split("\t")[3])
    #print(out.split("\t")[4])

    data = rg.data.split("\t")
    score = out.split("\t")[2]
    rg.data = "\t".join([score] + data[1:])

bed.write_bed(args.o)

    
# 29/9/2015
# python /projects/reg-gen/tools/phylocsf_check.py -i /projects/ig440396_dendriticcells/exp/RNASeq/expression/isofroms/deseq/new_bed/all_TCONs.bed -o all_TCONS_phyloCSF.bed -organism mm9 -mafdir /data/genome/mm9/multiz30way/maf/
コード例 #6
0
ファイル: triplexTools.py プロジェクト: rafalcode/reg-gen
def dbd_regions(exons, sig_region, rna_name, output,out_file=False, temp=None, fasta=True):
    """Generate the BED file of significant DBD regions and FASTA file of the sequences"""
    if len(sig_region) == 0:
        return
    #print(self.rna_regions)
    if not exons:
        pass
    else:
        dbd = GenomicRegionSet("DBD")
        dbdmap = {}
        if len(exons) == 1:
            print("## Warning: No information of exons in the given RNA sequence, the DBD position may be problematic. ")
        for rbs in sig_region:
            loop = True

            if exons[0][3] == "-":
                while loop:
                    cf = 0
                    for exon in exons:
                        #print(exon)

                        l = abs(exon[2] - exon[1])
                        tail = cf + l

                        if cf <= rbs.initial <=  tail:
                            dbdstart = exon[2] - rbs.initial + cf
                            
                            if rbs.final <= tail: 
                                #print("1")
                                dbdend = exon[2] - rbs.final + cf
                                if dbdstart > dbdend: dbdstart, dbdend = dbdend, dbdstart
                                dbd.add( GenomicRegion(chrom=exons[0][0], 
                                                       initial=dbdstart, final=dbdend, 
                                                       orientation=exons[0][3], 
                                                       name=str(rbs.initial)+"-"+str(rbs.final) ) )
                                dbdmap[str(rbs)] = dbd[-1].toString() + " strand:-"
                                loop = False
                                break
                            elif rbs.final > tail:

                                subtract = l + cf - rbs.initial
                                #print("2")
                                #print("Subtract: "+str(subtract))
                                if dbdstart > exon[1]: dbdstart, exon[1] = exon[1], dbdstart
                                dbd.add( GenomicRegion(chrom=exons[0][0], 
                                                       initial=dbdstart, final=exon[1], 
                                                       orientation=exons[0][3], 
                                                       name=str(rbs.initial)+"-"+str(rbs.initial+subtract)+"_split1" ) )
                        
                        elif rbs.initial < cf and rbs.final <= tail: 
                            #print("3")
                            dbdstart = exon[2]
                            dbdend = exon[2] - rbs.final + rbs.initial + subtract
                            if dbdstart > dbdend: dbdstart, dbdend = dbdend, dbdstart
                            dbd.add( GenomicRegion(chrom=exons[0][0], 
                                                   initial=dbdstart, final=dbdend, 
                                                   orientation=exons[0][3], 
                                                   name=str(cf)+"-"+str(rbs.final)+"_split2" ) )
                            dbdmap[str(rbs)] = dbd[-2].toString() + " & " + dbd[-1].toString() + " strand:-"
                            loop = False
                            break

                        elif rbs.initial > tail:
                            pass

                        cf += l
                        
                    loop = False
            else:

                while loop:
                    cf = 0
                    for exon in exons:
                        #print(exon)
                        l = exon[2] - exon[1]
                        tail = cf + l
                        #print("cf:   " + str(cf))
                        #print("tail: " + str(tail) )
                        if cf <= rbs.initial <=  tail:
                            dbdstart = exon[1] + rbs.initial - cf
                            
                            if rbs.final <= tail: 
                                #print("1")
                                dbdend = exon[1] + rbs.final -cf
                                dbd.add( GenomicRegion(chrom=exons[0][0], 
                                                       initial=dbdstart, final=dbdend, 
                                                       orientation=exons[0][3], 
                                                       name=str(rbs.initial)+"-"+str(rbs.final) ) )
                                dbdmap[str(rbs)] = dbd[-1].toString() + " strand:+"
                                loop = False
                                break
                            elif rbs.final > tail:

                                subtract = l + cf - rbs.initial
                                #print("2")
                                #print("Subtract: "+str(subtract))
                                dbd.add( GenomicRegion(chrom=exons[0][0], 
                                                       initial=dbdstart, final=exon[2], 
                                                       orientation=exons[0][3], 
                                                       name=str(rbs.initial)+"-"+str(rbs.initial+subtract)+"_split1" ) )

                        elif rbs.initial < cf and rbs.final <= tail: 
                            #print("3")
                            dbdstart = exon[1]
                            dbdend = exon[1] + rbs.final - rbs.initial - subtract
                            dbd.add( GenomicRegion(chrom=exons[0][0], 
                                                   initial=dbdstart, final=dbdend, 
                                                   orientation=exons[0][3], 
                                                   name=str(cf)+"-"+str(rbs.final)+"_split2" ) )
                            dbdmap[str(rbs)] = dbd[-2].toString() + " & " + dbd[-1].toString() + " strand:+"
                            loop = False
                            break

                        elif rbs.initial > tail:
                            pass

                        cf += l
                        
                    loop = False
        if not out_file:
            dbd.write_bed(filename=os.path.join(output, "DBD_"+rna_name+".bed"))
        else:
            # print(dbd)
            # print(dbd.sequences[0])
            dbd.write_bed(filename=output)
    # FASTA
    if fasta:
        #print(dbdmap)
        if not out_file:
            seq = pysam.Fastafile(os.path.join(output,"rna_temp.fa"))
            fasta_f = os.path.join(output, "DBD_"+rna_name+".fa")
        else:
            seq = pysam.Fastafile(os.path.join(temp,"rna_temp.fa"))
            fasta_f = output+".fa"

        with open(fasta_f, 'w') as fasta:
            for rbs in sig_region:
                print(">"+ rna_name +":"+str(rbs.initial)+"-"+str(rbs.final), file=fasta)
                s = seq.fetch(rbs.chrom, max(0, rbs.initial), rbs.final)
                for ss in [s[i:i + 80] for i in range(0, len(s), 80)]:
                    print(ss, file=fasta)
コード例 #7
0
ファイル: rgt-convertor.py プロジェクト: Marvin84/reg-gen
    elif args.mode == "bed_extend":
        print("input:\t" + args.i)
        print("output:\t" + args.o)
        bed = GenomicRegionSet("bed")
        bed.read_bed(args.i)
        for region in bed:
            if args.oz:
                if region.initial == region.final:
                    region.final += args.l
            else:
                if args.both:
                    region.initial -= args.l
                else: pass
                region.final += args.l

        bed.write_bed(args.o) 

    ############### BED get promoters #########################################
    elif args.mode == "bed_get_promoters":
        print("input:\t" + args.i)
        print("output:\t" + args.o)
        print("organism:\t" + args.organism)
        gene = GenomicRegionSet("genes")
        ### Input BED file
        if args.i.endswith(".bed"):
            gene.read_bed(args.i)
            promoter = GenomicRegionSet("promoter")

            promoterLength = int(args.l)

            for s in gene:
コード例 #8
0
ファイル: tdf_regiontest.py プロジェクト: eggduzao/reg-gen
class RandomTest:
    def __init__(self, rna_fasta, rna_name, dna_region, organism, showdbs=False):
        self.organism = organism
        genome = GenomeData(organism)
        self.genome_path = genome.get_genome()
        # RNA: Path to the FASTA file
        self.rna_fasta = rna_fasta
        self.showdbs = showdbs

        rnas = SequenceSet(name="rna", seq_type=SequenceType.RNA)
        rnas.read_fasta(self.rna_fasta)
        if rna_name:
            self.rna_name = rna_name
        else:
            self.rna_name = rnas[0].name

        # DNA: GenomicRegionSet
        self.dna_region = GenomicRegionSet(name="target")
        self.dna_region.read_bed(dna_region)
        self.dna_region = self.dna_region.gene_association(organism=self.organism, show_dis=True)

        self.topDBD = []
        self.stat = OrderedDict(name=rna_name, genome=organism)
        self.stat["target_regions"] = str(len(self.dna_region))


    def get_rna_region_str(self, rna):
        """Getting the rna region from the information header with the pattern:
                REGION_chr3_51978050_51983935_-_"""
        self.rna_regions = get_rna_region_str(rna)
        if self.rna_regions and len(self.rna_regions[0]) == 5:
            self.rna_expression = float(self.rna_regions[0][-1])
        else:
            self.rna_expression = "n.a."

    def connect_rna(self, rna, temp):
        d = connect_rna(rna, temp, self.rna_name)
        self.stat["exons"] = str(d[0])
        self.stat["seq_length"] = str(d[1])
        self.rna_len = d[1]

    def target_dna(self, temp, remove_temp, cutoff, l, e, c, fr, fm, of, mf, par, obed=False):
        """Calculate the true counts of triplexes on the given dna regions"""
        self.triplexator_p = [ l, e, c, fr, fm, of, mf ]

        txp = find_triplex(rna_fasta=os.path.join(temp, "rna_temp.fa"), dna_region=self.dna_region,
                           temp=temp, organism=self.organism, remove_temp=remove_temp,
                           l=l, e=e, c=c, fr=fr, fm=fm, of=of, mf=mf, par=par, genome_path=self.genome_path,
                           prefix="targeted_region", dna_fine_posi=False)
        txp.merge_rbs(rm_duplicate=True, region_set=self.dna_region, asgene_organism=self.organism, cutoff=cutoff)
        self.txp = txp
        self.stat["DBSs_target_all"] = str(len(self.txp))
        txp.remove_duplicates()
        self.rbss = txp.merged_dict.keys()
        # if len(self.rbss) == 0:
        #     print("ERROR: No potential binding event. Please change the parameters.")
        #     sys.exit(1)

        txpf = find_triplex(rna_fasta=os.path.join(temp, "rna_temp.fa"), dna_region=self.dna_region,
                            temp=temp, organism=self.organism, remove_temp=remove_temp,
                            l=l, e=e, c=c, fr=fr, fm=fm, of=of, mf=mf, par=par, genome_path=self.genome_path,
                            prefix="dbs", dna_fine_posi=True)
        txpf.remove_duplicates()
        txpf.merge_rbs(rbss=self.rbss, rm_duplicate=True, asgene_organism=self.organism)
        self.txpf = txpf

        self.stat["DBSs_target_all"] = str(len(self.txpf))

        self.counts_tr = OrderedDict()
        self.counts_dbs = OrderedDict()

        for rbs in self.rbss:
            tr = len(self.txp.merged_dict[rbs])
            self.counts_tr[rbs] = [tr, len(self.dna_region) - tr]
            self.counts_dbs[rbs] = len(self.txpf.merged_dict[rbs])

        self.region_dbd = self.txpf.sort_rbs_by_regions(self.dna_region)

        self.region_dbs = self.txpf.sort_rd_by_regions(regionset=self.dna_region)
        self.region_dbsm = {}
        self.region_coverage = {}

        for region in self.dna_region:
            self.region_dbsm[region.toString()] = self.region_dbs[region.toString()].get_dbs().merge(w_return=True)
            self.region_coverage[region.toString()] = float(self.region_dbsm[region.toString()].total_coverage()) / len \
                (region)
        self.stat["target_regions"] = str(len(self.dna_region))

        if obed:
            # btr = self.txp.get_dbs()
            # btr = btr.gene_association(organism=self.organism, show_dis=True)
            # btr.write_bed(os.path.join(temp, obed + "_target_region_dbs.bed"))
            # dbss = txpf.get_dbs()
            # dbss.write_bed(os.path.join(temp, obed + "_dbss.bed"))

            # output = self.dna_region.gene_association(organism=self.organism, show_dis=True)

            self.txp.write_bed(filename=os.path.join(temp, obed + "_target_region_dbs.bed"),
                               dbd_tag=False,
                               remove_duplicates=False, associated=self.organism)
            self.txpf.write_bed(filename=os.path.join(temp, obed + "_dbss.bed"),
                                remove_duplicates=False)


    def random_test(self, repeats, temp, remove_temp, l, e, c, fr, fm, of, mf, rm, par, filter_bed, alpha):
        """Perform randomization for the given times"""
        self.repeats = repeats
        marks = numpy.round(numpy.linspace(0, repeats - 1, num=41)).tolist()
        print("random_test")
        print(par)
        # Prepare the input lists for multiprocessing
        mp_input = []
        for i in range(repeats):
            mp_input.append([str(i), os.path.join(temp, "rna_temp.fa"), self.dna_region,
                             temp, self.organism, self.rbss, str(marks.count(i)),
                             str(l), str(e), str(c), str(fr), str(fm), str(of), str(mf), str(rm),
                             filter_bed, self.genome_path, par])
        # Multiprocessing
        print("\t\t|0%                  |                100%|")
        print("\t\t[", end="")
        pool = multiprocessing.Pool(processes=multiprocessing.cpu_count()-2)
        mp_output = pool.map(random_each, mp_input)
        # print(mp_output)
        pool.close()
        pool.join()
        print("]")

        # Processing the result
        self.region_matrix = []
        self.dbss_matrix = []
        self.data = {"region": {"ave": [],
                                "sd": [],
                                "p": [],
                                "sig_region": [],
                                "sig_boolean": []},
                     "dbs": {"ave": [],
                             "sd": [],
                             "p": [],
                             "sig_region": [],
                             "sig_boolean": []}}

        region_counts = [v[0] for v in mp_output]
        dbss_counts = [v[1] for v in mp_output]

        for i, rbs in enumerate(self.rbss):

            counts_regions = [v[i] for v in region_counts]

            self.data["region"]["ave"].append(numpy.mean(counts_regions))
            self.data["region"]["sd"].append(numpy.std(counts_regions))
            num_sig = len([h for h in counts_regions if h > self.counts_tr[rbs][0]])
            p_region = float(num_sig) / repeats
            self.data["region"]["p"].append(p_region)
            self.region_matrix.append(counts_regions)

            if p_region < alpha:
                self.data["region"]["sig_region"].append(rbs)
                self.data["region"]["sig_boolean"].append(True)
            else:
                self.data["region"]["sig_boolean"].append(False)

            try:
                if p_region < self.topDBD[1]: self.topDBD = [rbs.str_rna(pa=False), p_region]
            except:
                self.topDBD = [rbs.str_rna(pa=False), p_region]

            # Analysis based on DBSs
            if self.showdbs:
                counts_dbss = [v[i] for v in dbss_counts]

                self.data["dbs"]["ave"].append(numpy.mean(counts_dbss))
                self.data["dbs"]["sd"].append(numpy.std(counts_dbss))
                num_sig = len([h for h in counts_dbss if h > self.counts_dbs[rbs]])
                p_dbs = float(num_sig) / repeats
                self.data["dbs"]["p"].append(p_dbs)
                self.dbss_matrix.append(counts_dbss)
                if p_dbs < alpha:
                    self.data["dbs"]["sig_region"].append(rbs)
                    self.data["dbs"]["sig_boolean"].append(True)
                else:
                    self.data["dbs"]["sig_boolean"].append(False)
            try:
                self.stat["p_value"] = str(min(self.data["region"]["p"]))
            except:
                self.stat["p_value"] = "1"

        self.region_matrix = numpy.array(self.region_matrix)

        if self.showdbs: self.dbss_matrix = numpy.array(self.dbss_matrix)

        counts_dbss = [v[i] for v in dbss_counts]
        self.stat["DBSs_random_ave"] = numpy.mean(counts_dbss)
        try: self.stat["p_value"] = str(min(self.data["region"]["p"]))
        except: self.stat["p_value"] = "1"

    def dbd_regions(self, sig_region, output):
        """Generate the BED file of significant DBD regions and FASTA file of the sequences"""
        dbd_regions(exons=self.rna_regions, sig_region=sig_region, rna_name=self.rna_name, output=output)

        self.stat["DBD_all"] = str(len(self.rbss))
        self.stat["DBD_sig"] = str(len(self.data["region"]["sig_region"]))

        sigDBD = GenomicRegionSet("DBD_sig")
        sigDBD.sequences = self.data["region"]["sig_region"]
        rbss = self.txp.get_rbs()
        overlaps = rbss.intersect(y=sigDBD, mode=OverlapType.ORIGINAL)
        self.stat["DBSs_target_DBD_sig"] = str(len(overlaps))


    def lineplot(self, txp, dirp, ac, cut_off, log, ylabel, linelabel, showpa, sig_region, filename):
        """Generate lineplot for RNA"""

        lineplot(txp=txp, rnalen=self.rna_len, rnaname=self.rna_name, dirp=dirp, sig_region=sig_region,
                 cut_off=cut_off, log=log, ylabel=ylabel, linelabel=linelabel,
                 filename=filename, ac=ac, showpa=showpa)

    def boxplot(self, dir, matrix, sig_region, truecounts, sig_boolean, ylabel, filename):
        """Generate the visualized plot"""
        tick_size = 8
        label_size = 9

        f, ax = plt.subplots(1, 1, dpi=300, figsize=(6, 4))
        max_y = int(max([matrix.max()] + truecounts) * 1.1) + 1
        min_y = max(int(matrix.min() * 0.9) - 1, 0)

        # Significant DBD
        rect = patches.Rectangle(xy=(1, 0), width=0.8, height=max_y, facecolor=sig_color,
                                 edgecolor="none", alpha=0.5, lw=None, label="Significant DBD")
        for i, r in enumerate(sig_boolean):
            if r:
                rect = patches.Rectangle(xy=(i + 0.6, min_y), width=0.8, height=max_y, facecolor=sig_color,
                                         edgecolor="none", alpha=0.5, lw=None, label="Significant DBD")
                ax.add_patch(rect)

        # Plotting

        bp = ax.boxplot(matrix.transpose(), notch=False, sym='o', vert=True,
                        whis=1.5, positions=None, widths=None,
                        patch_artist=True, bootstrap=None)
        z = 10
        plt.setp(bp['boxes'], color=nontarget_color, alpha=1, edgecolor="none")
        plt.setp(bp['whiskers'], color='black', linestyle='-', linewidth=1, zorder=z, alpha=1)
        plt.setp(bp['fliers'], markerfacecolor='gray', color='white', alpha=0.3, markersize=1.8, zorder=z)
        plt.setp(bp['caps'], color='white', zorder=-1)
        plt.setp(bp['medians'], color='black', linewidth=1.5, zorder=z + 1)

        # Plot target regions
        plt.plot(range(1, len(self.rbss) + 1), truecounts, markerfacecolor=target_color,
                 marker='o', markersize=5, linestyle='None', markeredgecolor="white", zorder=z + 5)

        ax.set_xlabel(self.rna_name + " DNA Binding Domains", fontsize=label_size)
        ax.set_ylabel(ylabel, fontsize=label_size, rotation=90)

        ax.set_ylim([min_y, max_y])
        ax.yaxis.set_major_locator(MaxNLocator(integer=True))

        ax.set_xticklabels([dbd.str_rna(pa=False) for dbd in self.rbss], rotation=35,
                           ha="right", fontsize=tick_size)
        for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(tick_size)

        for spine in ['top', 'right']:
            ax.spines[spine].set_visible(False)
        ax.tick_params(axis='x', which='both', bottom='off', top='off', labelbottom='on')
        ax.tick_params(axis='y', which='both', left='on', right='off', labelbottom='off')

        # Legend
        dot_legend, = plt.plot([1, 1], color=target_color, marker='o', markersize=5, markeredgecolor="white",
                               linestyle='None')
        bp_legend, = plt.plot([1, 1], color=nontarget_color, linewidth=6, alpha=1)

        ax.legend([dot_legend, bp_legend, rect], ["Target Regions", "Non-target regions", "Significant DBD"],
                  bbox_to_anchor=(0., 1.02, 1., .102), loc=2, mode="expand", borderaxespad=0.,
                  prop={'size': 9}, ncol=3, numpoints=1)
        bp_legend.set_visible(False)
        dot_legend.set_visible(False)

        # f.tight_layout(pad=1.08, h_pad=None, w_pad=None)
        f.savefig(os.path.join(dir, filename + ".png"), facecolor='w', edgecolor='w',
                  bbox_extra_artists=(plt.gci()), bbox_inches='tight', dpi=300)
        # PDF
        for tick in ax.xaxis.get_major_ticks():
            tick.label.set_fontsize(12)
        for tick in ax.yaxis.get_major_ticks():
            tick.label.set_fontsize(12)
        ax.xaxis.label.set_size(14)
        ax.yaxis.label.set_size(14)

        pp = PdfPages(os.path.join(dir, filename + '.pdf'))
        pp.savefig(f, bbox_extra_artists=(plt.gci()), bbox_inches='tight')
        pp.close()

    def gen_html(self, directory, parameters, obed, align=50, alpha=0.05, score=False):
        """Generate the HTML file"""
        dir_name = os.path.basename(directory)
        html_header = "Genomic Region Test: " + dir_name
        link_ds = OrderedDict()
        link_ds["RNA"] = "index.html"
        link_ds["Sig Target Regions"] = "starget_regions.html"
        link_ds["Target Regions"] = "target_regions.html"
        link_ds["Parameters"] = "parameters.html"

        ##################################################
        # index.html

        html = Html(name=html_header, links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
                    fig_rpath="../style", RGT_header=False, other_logo="TDF", homepage="../index.html")
        # Plots
        html.add_figure("lineplot_region.png", align="left", width="45%", more_images=["boxplot_regions.png"])
        if self.showdbs:
            html.add_figure("lineplot_dbs.png", align="left", width="45%", more_images=["boxplot_dbs.png"])

        if self.showdbs:
            header_list = [["#", "DBD", "Target Regions", None, "Non-target Regions", None, "Statistics",
                            "Target Regions", "Non-target Regions", None, "Statistics"],
                           ["", "", "with DBS", "without DBS", "with DBS (average)", "s.d.", "<i>p</i>-value",
                            "NO. DBSs", "NO. DBSs (average)", "s.d.", "<i>p</i>-value"]]
            header_titles = [["Rank", "DNA Binding Domain", "Given target regions on DNA", None,
                              "Regions from randomization", None, "Statistics based on target regions",
                              "Given target regions on DNA", "Regions from randomization", None,
                              "Statistics based on DNA Binding Sites"],
                             ["", "",
                              "Number of target regions with DBS binding",
                              "Number of target regions without DBS binding",
                              "Average number of regions from randomization with DBS binding",
                              "Standard deviation", "P value",
                              "Number of related DNA Binding Sites binding to target regions",
                              "Average number of DNA Binding Sites binding to random regions",
                              "Standard deviation", "P-value"]]
            border_list = [" style=\"border-right:1pt solid gray\"",
                           " style=\"border-right:1pt solid gray\"", "",
                           " style=\"border-right:1pt solid gray\"", "",
                           " style=\"border-right:1pt solid gray\"",
                           " style=\"border-right:2pt solid gray\"",
                           " style=\"border-right:1pt solid gray\"", "",
                           " style=\"border-right:1pt solid gray\"",
                           " style=\"border-right:1pt solid gray\""]
        else:
            header_list = [["#", "DBD", "Target Regions", None, "Non-target Regions", None, "Statistics", None],
                           ["", "", "with DBS", "without DBS", "with DBS (average)", "s.d.", "<i>p</i>-value",
                            "z-score"]]
            header_titles = [["Rank", "DNA Binding Domain", "Given target regions on DNA", None,
                              "Regions from randomization", None, "Statistics based on target regions", None],
                             ["", "",
                              "Number of target regions with DBS binding",
                              "Number of target regions without DBS binding",
                              "Average number of regions from randomization with DBS binding",
                              "Standard deviation", "P value", "Z-score"]]
            border_list = [" style=\"border-right:1pt solid gray\"",
                           " style=\"border-right:1pt solid gray\"", "",
                           " style=\"border-right:1pt solid gray\"", "",
                           " style=\"border-right:1pt solid gray\"",
                           " style=\"border-right:1pt solid gray\"", ""]

        type_list = 'ssssssssssssssss'
        col_size_list = [50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50]
        data_table = []

        for i, rbs in enumerate(self.rbss):
            if self.data["region"]["p"][i] < alpha:
                p_region = "<font color=\"red\">" + value2str(self.data["region"]["p"][i]) + "</font>"

            else:
                p_region = value2str(self.data["region"]["p"][i])
            zs = (self.counts_tr[rbs][0] - self.data["region"]["ave"][i]) / self.data["region"]["sd"][i]
            new_line = [str(i + 1),
                        rbs.str_rna(pa=False),
                        '<a href="dbd_region.html#' + rbs.str_rna() +
                        '" style="text-align:left">' + str(self.counts_tr[rbs][0]) + '</a>',
                        str(self.counts_tr[rbs][1]),
                        value2str(self.data["region"]["ave"][i]),
                        value2str(self.data["region"]["sd"][i]),
                        p_region,
                        value2str(zs)]
            if self.showdbs:
                if self.data["dbs"]["p"][i] < alpha:
                    p_dbs = "<font color=\"red\">" + value2str(self.data["dbs"]["p"][i]) + "</font>"
                else:
                    p_dbs = value2str(self.data["dbs"]["p"][i])

                new_line += [str(self.counts_dbs[rbs]),
                             value2str(self.data["dbs"]["ave"][i]),
                             value2str(self.data["dbs"]["sd"][i]),
                             p_dbs]
            data_table.append(new_line)

        data_table = natsort.natsorted(data_table, key=lambda x: x[6])
        html.add_zebra_table(header_list, col_size_list, type_list, data_table, align=align, cell_align="left",
                             auto_width=True, header_titles=header_titles, border_list=border_list, sortable=True)

        html.add_heading("Notes")
        html.add_list(["RNA name: " + self.rna_name,
                       "Randomization is performed for " + str(self.repeats) + " times.",
                       "DBD stands for DNA Binding Domain on RNA.",
                       "DBS stands for DNA Binding Site on DNA."])
        html.add_fixed_rank_sortable()
        html.write(os.path.join(directory, "index.html"))

        #############################################################
        # RNA subpage: Profile of targeted regions for each merged DNA Binding Domain
        #############################################################

        header_list = ["#", "Target Region",
                       "Associated Gene",
                       "No. of DBSs",
                       "DBS coverage"]
        header_titles = ["Rank", "Given target regions from BED files",
                         "Associated genes which is overlapping with the given region or close to it (less than 50000 bp)",
                         "Number of DNA Binding Sites locate within the region",
                         "The proportion of the region covered by DBS binding"]

        #########################################################
        # dbd_region.html
        html = Html(name=html_header, links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
                    fig_rpath="../style", RGT_header=False, other_logo="TDF", homepage="../index.html")

        for rbsm in self.rbss:
            html.add_heading("DNA Binding Domain: " + rbsm.str_rna(),
                             idtag=rbsm.str_rna())
            data_table = []
            for i, region in enumerate(self.txp.merged_dict[rbsm]):
                # Add information
                data_table.append([str(i + 1),
                                   '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' + self.organism +
                                   "&position=" + region.chrom + "%3A" + str(region.initial) + "-" + str(region.final) +
                                   '" style="text-align:left">' + region.toString(space=True) + '</a>',
                                   split_gene_name(gene_name=region.name, org=self.organism),
                                   str(len(self.region_dbs[region.toString()])),
                                   value2str(self.region_coverage[region.toString()])
                                   ])

            html.add_zebra_table(header_list, col_size_list, type_list, data_table, align=align, cell_align="left",
                                 auto_width=True, header_titles=header_titles, sortable=True)
        html.add_fixed_rank_sortable()
        html.write(os.path.join(directory, "dbd_region.html"))

        #############################################################
        # Targeted regions centered
        #############################################################

        ##############################################################################################
        # target_regions.html
        html = Html(name=html_header, links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
                    fig_rpath="../style", RGT_header=False, other_logo="TDF", homepage="../index.html")

        if score:
            header_list = ["#", "Target region", "Associated Gene", "DBSs Count",
                           "DBS coverage", "Score", "Sum of ranks"]
            header_titles = ["Rank",
                             "Target regions loaded from the given BED file",
                             "Associated genes which is overlapping with the given region or close to it (less than 50000 bp)",
                             "Number of DNA Binding Sites within the region",
                             "The proportion of the region covered by DBS binding",
                             "Scores from BED file",
                             "Sum of all the left-hand-side ranks"]
        else:
            header_list = ["#", "Target region", "Associated Gene", "DBSs Count",
                           "DBS coverage", "Sum of ranks"]
            header_titles = ["Rank",
                             "Target regions loaded from the given BED file",
                             "Associated genes which is overlapping with the given region or close to it (less than 50000 bp)",
                             "Number of DNA Binding Sites within the region",
                             "The proportion of the region covered by DBS binding",
                             "Sum of all the left-hand-side ranks"]
        html.add_heading("Target Regions")
        data_table = []

        if not self.dna_region.sorted: self.dna_region.sort()

        # Calculate the ranking
        rank_count = len(self.dna_region) - rank_array([len(self.region_dbs[p.toString()]) for p in self.dna_region])
        rank_coverage = len(self.dna_region) - rank_array([self.region_coverage[p.toString()] for p in self.dna_region])

        if score:
            try:
                score_list = [float(p.data.split("\t")[0]) for p in self.dna_region]
                rank_score = len(self.dna_region) - rank_array([abs(s) for s in score_list])
                rank_sum = [x + y + z for x, y, z in zip(rank_count, rank_coverage, rank_score)]
                # sum_rank = rank_array(rank_sum)  # method='min'
            except ImportError:
                print("There is no score in BED file, please don't use '-score' argument.")
        else:
            rank_sum = [x + y for x, y in zip(rank_count, rank_coverage)]
            sum_rank = rank_array(rank_sum)

        for i, region in enumerate(self.dna_region):
            dbs_counts = str(len(self.region_dbs[region.toString()]))
            dbs_cover = value2str(self.region_coverage[region.toString()])

            newline = [str(i + 1),
                       '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' + self.organism +
                       "&position=" + region.chrom + "%3A" + str(region.initial) + "-" + str(region.final) +
                       '" style="text-align:left">' + region.toString(space=True) + '</a>',
                       split_gene_name(gene_name=region.name, org=self.organism),
                       '<a href="region_dbs.html#' + region.toString() +
                       '" style="text-align:left">' + dbs_counts + '</a>',
                       dbs_cover]

            if score:
                dbs_score = value2str(score_list[i])
                region.data = "\t".join([dbs_counts, dbs_cover, dbs_score, str(rank_sum[i])])
                newline.append(dbs_score)
                newline.append(str(rank_sum[i]))
            else:
                region.data = "\t".join([dbs_counts, dbs_cover, str(rank_sum[i])])
                newline.append(str(rank_sum[i]))
            data_table.append(newline)

        data_table = natsort.natsorted(data_table, key=lambda x: x[-1])
        # data_table = sorted(data_table, key=lambda x: x[-1])
        html.add_zebra_table(header_list, col_size_list, type_list, data_table, align=align, cell_align="left",
                             auto_width=True, header_titles=header_titles, sortable=True)
        html.add_heading("Notes")
        html.add_list(["All target regions without any bindings are ignored."])
        html.add_fixed_rank_sortable()
        html.write(os.path.join(directory, "target_regions.html"))

        self.dna_region.sort_score()
        self.dna_region.write_bed(os.path.join(directory, obed + "_target_regions.bed"))



        ##############################################################################################
        # starget_regions.html    for significant target regions

        stargets = GenomicRegionSet("sig_targets")
        sig_dbs = {}
        sig_dbs_coverage = {}
        for i, r in enumerate(self.dna_region):
            sig_bindings = self.region_dbs[r.toString()].overlap_rbss(rbss=self.data["region"]["sig_region"])
            dbs = sig_bindings.get_dbs()
            if len(dbs) > 0:
                stargets.add(r)
                m_dbs = dbs.merge(w_return=True)
                sig_dbs[r] = len(dbs)
                # self.promoter["de"]["merged_dbs"][promoter.toString()] = len(m_dbs)
                sig_dbs_coverage[r] = float(m_dbs.total_coverage()) / len(r)

        html = Html(name=html_header, links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
                    fig_rpath="../style", RGT_header=False, other_logo="TDF", homepage="../index.html")

        # Select promoters in sig DBD
        if len(self.data["region"]["sig_region"]) == 0:
            html.add_heading("There is no significant DBD.")
        else:
            html.add_heading("Target regions bound by significant DBD")
            data_table = []
            # Calculate the ranking
            rank_count = len(stargets) - rank_array([sig_dbs[p] for p in stargets])
            rank_coverage = len(stargets) - rank_array([sig_dbs_coverage[p] for p in stargets])
            if score:
                score_list = [float(p.data.split("\t")[0]) for p in stargets]
                rank_score = len(stargets) - rank_array([abs(s) for s in score_list])
                rank_sum = [x + y + z for x, y, z in zip(rank_count, rank_coverage, rank_score)]
                sum_rank = rank_array(rank_sum)  # method='min'
            else:
                rank_sum = [x + y for x, y in zip(rank_count, rank_coverage)]
                sum_rank = rank_array(rank_sum)

            for i, region in enumerate(stargets):
                dbssount = '<a href="region_dbs.html#' + region.toString() + \
                           '" style="text-align:left">' + str(sig_dbs[region]) + '</a>'

                region_link = region_link_internet(self.organism, region)

                newline = [str(i + 1), region_link,
                           split_gene_name(gene_name=region.name, org=self.organism),
                           dbssount, value2str(sig_dbs_coverage[region]) ]
                if score:
                    dbs_score = value2str(score_list[i])
                    # region.data = "\t".join([dbs_counts, dbs_cover, dbs_score, str(sum_rank[i])])
                    newline.append(dbs_score)
                    newline.append(str(rank_sum[i]))
                    # print([dbs_score, str(sum_rank[i])])
                else:
                    # region.data = "\t".join([dbs_counts, dbs_cover, str(sum_rank[i])])
                    newline.append(str(rank_sum[i]))

                # newline += ["<i>" + str(rank_sum[i]) + "</i>"]
                # print(newline)
                data_table.append(newline)

            # print(data_table)
            # data_table = sorted(data_table, key=lambda x: x[-1])
            data_table = natsort.natsorted(data_table, key=lambda x: x[-1])
            html.add_zebra_table(header_list, col_size_list, type_list, data_table, align=align, cell_align="left",
                                 header_titles=header_titles, border_list=None, sortable=True)
            html.add_heading("Notes")
            html.add_list(["DBS stands for DNA Binding Site on DNA.",
                           "DBS coverage is the proportion of the region where has potential to form triple helices with the given RNA."])
            html.add_fixed_rank_sortable()
            html.write(os.path.join(directory, "starget_regions.html"))

        ############################
        # Subpages for targeted region centered page
        # region_dbs.html
        header_list = ["RBS", "DBS", "Strand", "Score", "Motif", "Orientation"]

        html = Html(name=html_header, links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
                    fig_rpath="../style", RGT_header=False, other_logo="TDF", homepage="../index.html")

        for i, region in enumerate(self.dna_region):
            if len(self.region_dbs[region.toString()]) == 0:
                continue
            else:
                html.add_heading("Associated gene: " + split_gene_name(gene_name=region.name, org=self.organism),
                                 idtag=region.toString())
                html.add_free_content(['<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' + self.organism +
                                       "&position=" + region.chrom + "%3A" + str(region.initial) +
                                       "-" + str(region.final) + '" style="margin-left:50">' +
                                       region.toString(space=True) + '</a>'])
                data_table = []
                for rd in self.region_dbs[region.toString()]:
                    rbs = rd.rna.str_rna(pa=False)
                    for rbsm in self.data["region"]["sig_region"]:
                        # rbsm = rbsm.partition(":")[2].split("-")
                        if rd.rna.overlap(rbsm):
                            rbs = "<font color=\"red\">" + rbs + "</font>"
                    data_table.append([rbs,
                                       '<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' + self.organism +
                                       "&position=" + rd.dna.chrom + "%3A" + str(rd.dna.initial) + "-" + str(
                                           rd.dna.final) +
                                       '" style="text-align:left">' + rd.dna.toString(space=True) + '</a>',
                                       rd.dna.orientation, rd.score, rd.motif, rd.orient])
                html.add_zebra_table(header_list, col_size_list, type_list, data_table, align=align, cell_align="left",
                                     auto_width=True)
        html.write(os.path.join(directory, "region_dbs.html"))

        ###############################################################################33
        ################ Parameters.html

        html = Html(name=html_header, links_dict=link_ds,  # fig_dir=os.path.join(directory,"style"),
                    fig_rpath="../style", RGT_header=False, other_logo="TDF", homepage="../index.html")
        html.add_heading("Parameters")
        header_list = ["Description", "Arguments", "Value"]

        data_table = [["RNA sequence name", "-rn", parameters.rn],
                      ["Input RNA sequence file", "-r", os.path.basename(parameters.r)],
                      ["Input BED file", "-bed", os.path.basename(parameters.bed)],
                      ["Output directory", "-o", os.path.basename(parameters.o)],
                      ["Organism", "-organism", parameters.organism],
                      ["Number of repitetion of andomization", "-n", str(parameters.n)],
                      ["Alpha level for rejection p value", "-a", str(parameters.a)],
                      ["Cut off value for filtering out the low counts of DBSs", "-ccf", str(parameters.ccf)],
                      ["Remove temporary files", "-rt", str(parameters.rt)],
                      ["Input BED file for masking in randomization", "-f", str(parameters.f)],
                      ["Input file for RNA accecibility", "-ac", str(parameters.ac)],
                      ["Cut off value for RNA accecibility", "-accf", str(parameters.accf)],
                      ["Output the BED files for DNA binding sites.", "-obed", str(parameters.obed)],
                      ["Show parallel and antiparallel bindings in the plot separately.", "-showpa",
                       str(parameters.showpa)],
                      ["Minimum length", "-l", str(self.triplexator_p[0])],
                      ["Maximum error rate", "-e", str(self.triplexator_p[1])],
                      ["Tolerated number of consecutive errors", "-c", str(self.triplexator_p[2])],
                      ["Filtering repeats", "-fr", str(self.triplexator_p[3])],
                      ["Filtering mode", "-fm", str(self.triplexator_p[4])],
                      ["Output format", "-of", str(self.triplexator_p[5])],
                      ["Merge features", "-mf", str(self.triplexator_p[6])]]
        html.add_zebra_table(header_list, col_size_list, type_list, data_table, align=align, cell_align="left",
                             auto_width=True)
        html.add_free_content(['<a href="summary.txt" style="margin-left:100">See details</a>'])
        html.write(os.path.join(directory, "parameters.html"))