コード例 #1
0
def test_tell_inserts_solutions_with_multiple_emitters(tell_metadata):
    archive = GridArchive([100, 100], [(-1, 1), (-1, 1)])
    emitters = [
        GaussianEmitter(archive, [0.0, 0.0], 1, batch_size=1),
        GaussianEmitter(archive, [0.5, 0.5], 1, batch_size=2),
        GaussianEmitter(archive, [-0.5, -0.5], 1, batch_size=3),
    ]
    optimizer = Optimizer(archive, emitters)

    _ = optimizer.ask()
    behavior_values = [[1.0, 1.0], [-1.0, 1.0], [-1.0, -1.0], [1.0, -1.0],
                       [0.0, 0.0], [0.0, 1.0]]
    metadata = [f"metadata_{i}" for i in range(6)] if tell_metadata else None
    expected_metadata = metadata if tell_metadata else [None] * 6

    # The sum of all the emitters' batch sizes is 6.
    optimizer.tell(
        objective_values=np.ones(6),
        behavior_values=behavior_values,
        metadata=metadata,
    )

    # Note: This assumes data() returns entries in order of insertion, but this
    # may change in the future.
    all_sols, all_objs, all_behs, _, all_meta = optimizer.archive.data()
    assert len(all_sols) == 6
    assert (behavior_values == all_behs).all()
    assert (all_objs == np.ones(6)).all()
    assert (expected_metadata == all_meta).all()
コード例 #2
0
ファイル: factory_test.py プロジェクト: agaier/pyribs
def test_from_config_with_valid_input(use_toml, tmp_path):
    seed = 42
    batch_size = 4

    archive = GridArchive([64, 64], [(-1, 1), (-1, 1)], seed=seed)
    emitters = [
        GaussianEmitter(archive, [0.0, 0.0],
                        0.1,
                        batch_size=batch_size,
                        seed=seed)
    ]
    optimizer = Optimizer(archive, emitters)

    config_dict = {
        "archive": {
            "type": "GridArchive",
            "dims": [64, 64],
            "ranges": [(-1, 1), (-1, 1)],
            "seed": seed,
        },
        "emitters": [{
            "type": "GaussianEmitter",
            "x0": [0.0, 0.0],
            "sigma0": 0.1,
            "batch_size": batch_size,
            "seed": seed,
        }],
        "optimizer": {
            "type": "Optimizer",
        },
    }
    if use_toml:
        config_path = tmp_path / "config.toml"
        with config_path.open("w") as file:
            toml.dump(config_dict, file)
        created_optimizer = ribs.factory.from_config(config_path)
    else:
        created_optimizer = ribs.factory.from_config(config_dict)

    # Check types.
    assert isinstance(created_optimizer, Optimizer)
    assert isinstance(created_optimizer.archive, GridArchive)
    assert len(created_optimizer.emitters) == 1
    assert isinstance(created_optimizer.emitters[0], GaussianEmitter)

    # Check results from ask() and tell() -- since seeds are the same, all
    # results should be the same.
    optimizer_sols = optimizer.ask()
    created_optimizer_sols = created_optimizer.ask()
    assert len(optimizer_sols) == batch_size
    assert (optimizer_sols == created_optimizer_sols).all()

    objective_values = [0.0] * batch_size
    behavior_values = np.array([[1, 1], [-1, 1], [-1, -1], [1, -1]])
    optimizer.tell(objective_values, behavior_values)
    created_optimizer.tell(objective_values, behavior_values)
    assert (optimizer.archive.as_pandas() ==
            created_optimizer.archive.as_pandas()).all(None)
コード例 #3
0
ファイル: optimizer_test.py プロジェクト: wx-b/pyribs
def test_tell_inserts_solutions_with_multiple_emitters():
    archive = GridArchive([100, 100], [(-1, 1), (-1, 1)])
    emitters = [
        GaussianEmitter(archive, [0.0, 0.0], 1, batch_size=1),
        GaussianEmitter(archive, [0.5, 0.5], 1, batch_size=2),
        GaussianEmitter(archive, [-0.5, -0.5], 1, batch_size=3),
    ]
    optimizer = Optimizer(archive, emitters)

    _ = optimizer.ask()

    # The sum of all the emitters' batch sizes is 6.
    optimizer.tell(
        objective_values=[1.0] * 6,
        behavior_values=[[1.0, 1.0], [-1.0, 1.0], [-1.0, -1.0], [1.0, -1.0],
                         [0.0, 0.0], [0.0, 1.0]],
    )
    assert len(optimizer.archive.as_pandas()) == 6
コード例 #4
0
                             num_samples=opt.num_samples)
                    for solution in solutions
                ]

            bc0 = 0
            bc1 = 0
            end_states = []

            for result in results:
                bcs.append([result[1], result[2]])
                objectives.append(result[0])
                bc0 += result[1]
                bc1 += result[2]
                end_states.append(result[3])

            optimizer.tell(objectives, bcs)

            score_obj = max(objectives)
            bc0 = bc0 / float(len(objectives))
            bc1 = bc1 / float(len(objectives))

            tb_logging(archive, i, start_time, logdir, score_obj, bc0, bc1,
                       end_states)

            if i % 100 == 0:
                #generate a heatmap
                plt.figure(figsize=(8, 6))
                #plt.figure(figsize=(8,2))
                grid_archive_heatmap(archive)
                plt.title(obj_names[opt.obj])
                plt.xlabel(bc_names[opt.bcs[0]])  #objective 0