コード例 #1
0
def main():
    """
    RichDEM flat resolution: give a gentle slope
    """
    # lazy import RICHDEM
    try:
        import richdem as rd
    except:
        g.message(
            flags="e",
            message=("RichDEM not detected. Install pip3 and " +
                     "then type at the command prompt: " +
                     '"pip3 install richdem".'),
        )

    _input = options["input"]
    _output = options["output"]
    _method = options["method"]
    _exponent = options["exponent"]
    _weights = options["weights"]

    if (_method == "Holmgren") or (_method == "Freeman"):
        if _exponent == "":
            g.message(
                flags="w",
                message=("Exponent must be defined for " +
                         "Holmgren or Freeman methods. " + "Exiting."),
            )
            return
        else:
            _exponent = float(_exponent)
    else:
        _exponent = None

    if _weights == "":
        rd_weights = None
    else:
        g_weights = garray.array(_weights, null=np.nan)
        rd_weights = rd.rdarray(g_weights, no_data=np.nan)

    dem = garray.array(_input, null=np.nan)

    mask = dem * 0 + 1

    rd_input = rd.rdarray(dem, no_data=np.nan)
    del dem
    rd_output = rd.FlowAccumulation(
        dem=rd_input,
        method=_method,
        exponent=_exponent,
        weights=rd_weights,
        in_place=False,
    )

    rd_output *= mask

    accum = garray.array()
    accum[:] = rd_output[:]
    accum.write(_output, overwrite=gscript.overwrite())
コード例 #2
0
def main():
    """
    RichDEM flat resolution: give a gentle slope
    """
    # lazy import RICHDEM
    try:
        import richdem as rd
    except:
        g.message(flags='e',
                  message=('RichDEM not detected. Install pip3 and ' +
                           'then type at the command prompt: ' +
                           '"pip3 install richdem".'))

    options, flags = gscript.parser()
    _input = options['input']
    _output = options['output']
    _method = options['method']
    _exponent = options['exponent']
    _weights = options['weights']

    if (_method == 'Holmgren') or (_method == 'Freeman'):
        if _exponent == '':
            g.message(flags='w',
                      message=('Exponent must be defined for ' +
                               'Holmgren or Freeman methods. ' + 'Exiting.'))
            return
        else:
            _exponent = float(_exponent)
    else:
        _exponent = None

    if _weights == '':
        rd_weights = None
    else:
        g_weights = garray.array()
        g_weights.read(_weights, null=np.nan)
        rd_weights = rd.rdarray(g_weights, no_data=np.nan)

    dem = garray.array()
    dem.read(_input, null=np.nan)

    mask = dem * 0 + 1

    rd_input = rd.rdarray(dem, no_data=np.nan)
    del dem
    rd_output = rd.FlowAccumulation(dem=rd_input,
                                    method=_method,
                                    exponent=_exponent,
                                    weights=rd_weights,
                                    in_place=False)

    rd_output *= mask

    accum = garray.array()
    accum[:] = rd_output[:]
    accum.write(_output, overwrite=gscript.overwrite())
コード例 #3
0
    def _accumulate_flow_RD(self, props_Pf, hill_flow=False):
        """
        Function to accumualte flow using the richdem package

        Parameters
        ----------
        props_Pf : float
            flow proportions calcualte with the RichDEM package using the
            FlowProportions function
        hill_flow : Boolean, optional
            Defines which instance of flow accumulation is updated.
            If FALSE, the first, default instance is updated.
            If TRUE, the second, hillslope, instance is updated.
            The default is False.

        Returns
        -------
        None.

        """
        if not hill_flow:
            a = self._drainage_area
            q = self._discharges
        else:
            a = self._hill_drainage_area
            q = self._hill_discharges

        # Create weight for flow accum: both open (status ==1) and closed nodes (status ==4) will have zero weight
        wg = np.full(self.grid.number_of_nodes, self.grid.dx**2)

        # Only core nodes (status == 0) need to receive a weight
        wg[self._grid.status_at_node != NodeStatus.CORE] = 0
        wg = rd.rdarray(
            wg.reshape(self.grid.shape),
            no_data=-9999,
        )
        wg.geotransform = [0, 1, 0, 0, 0, -1]

        with self._suppress_output():
            a[:] = np.array(
                rd.FlowAccumFromProps(props=props_Pf, weights=wg).reshape(
                    self.grid.number_of_nodes
                )
            )

        if any(self.grid.at_node["water__unit_flux_in"] != 1):
            wg = self.grid.at_node["water__unit_flux_in"] * self.grid.dx * self.grid.dx
            # Only core nodes (status == 0) need to receive a weight
            wg[self._grid.status_at_node != NodeStatus.CORE] = 0
            wg = rd.rdarray(wg.reshape(self.grid.shape), no_data=-9999)
            wg.geotransform = [0, 1, 0, 0, 0, -1]
            with self._suppress_output():
                q_pf = rd.FlowAccumFromProps(props=props_Pf, weights=wg)
            q[:] = np.array(q_pf.reshape(self.grid.number_of_nodes))
        else:
            q[:] = self._drainage_area
コード例 #4
0
def main():
    """
    RichDEM depression breaching
    """
    # lazy import RICHDEM
    try:
        import richdem as rd
    except:
        g.message(
            flags="e",
            message=("RichDEM not detected. Install pip3 and " +
                     "then type at the command prompt: " +
                     '"pip3 install richdem".'),
        )

    _input = options["input"]
    _output = options["output"]
    _topology = options["topology"]

    dem = garray.array()
    dem.read(_input, null=np.nan)

    rd_inout = rd.rdarray(dem, no_data=np.nan)
    rd.BreachDepressions(dem=rd_inout, in_place=True, topology=_topology)

    dem[:] = rd_inout[:]
    dem.write(_output, overwrite=gscript.overwrite())
コード例 #5
0
    def __init__(self,
                 dtm_path,
                 manning_path,
                 cellsize=5,
                 radius=2000,
                 nodata=-99,
                 mute=True):
        self.dtm_ds = gtif.openf(dtm_path)
        self.dtm_gt = self.dtm_ds.GetGeoTransform()
        self.mannings_ds = gtif.openf(manning_path)
        self.mannings_gt = self.mannings_ds.GetGeoTransform()

        Matrix.__init__(self, gtif.as_array(self.dtm_ds))

        self.cellsize = cellsize
        self.radius = radius
        self.nodata = nodata

        self.dtm = rd.rdarray(self.dtm, no_data=nodata)
        rd.FillDepressions(self.dtm, in_place=True)

        self.mannings = self.array(gtif.as_array(self.mannings_ds))
        self.mannings = GeoTransformFit(self.mannings, self.mannings_gt,
                                        self.dtm_gt)

        self.mute = mute
コード例 #6
0
def main():
    """
    RichDEM depression filling
    """
    
    options, flags = gscript.parser()
    _input = options['input']
    _output = options['output']
    _epsilon = options['epsilon']
    _topology = options['topology']
    
    if _epsilon == 'true':
        epsilon = True
    else:
        epsilon = False

    dem = garray.array()
    dem.read(_input, null=np.nan)
    
    rd_inout = rd.rdarray(dem, no_data=np.nan)
    rd.FillDepressions(dem=rd_inout, epsilon=epsilon, in_place=True,
                       topology=_topology)
    
    dem[:] = rd_inout[:]
    dem.write(_output, overwrite=gscript.overwrite())
コード例 #7
0
def main():
    """
    RichDEM depression filling
    """
    # lazy import RICHDEM
    try:
        import richdem as rd
    except:
        g.message(flags='e',
                  message=('RichDEM not detected. Install pip3 and ' +
                           'then type at the command prompt: ' +
                           '"pip3 install richdem".'))

    _input = options['input']
    _output = options['output']
    _epsilon = options['epsilon']
    _topology = options['topology']

    if _epsilon == 'true':
        epsilon = True
    else:
        epsilon = False

    dem = garray.array()
    dem.read(_input, null=np.nan)

    rd_inout = rd.rdarray(dem, no_data=np.nan)
    rd.FillDepressions(dem=rd_inout,
                       epsilon=epsilon,
                       in_place=True,
                       topology=_topology)

    dem[:] = rd_inout[:]
    dem.write(_output, overwrite=gscript.overwrite())
コード例 #8
0
def main():
    """
    RichDEM flat resolution: give a gentle slope
    """
    # lazy import RICHDEM
    try:
        import richdem as rd
    except:
        g.message(
            flags="e",
            message=("RichDEM not detected. Install pip3 and " +
                     "then type at the command prompt: " +
                     '"pip3 install richdem".'),
        )

    _input = options["input"]
    _output = options["output"]
    _attribute = options["attribute"]
    _zscale = float(options["zscale"])

    dem = garray.array()
    dem.read(_input, null=np.nan)

    rd_input = rd.rdarray(dem, no_data=np.nan)
    del dem
    rd_output = rd.TerrainAttribute(dem=rd_input,
                                    attrib=_attribute,
                                    zscale=_zscale)

    outarray = garray.array()
    outarray[:] = rd_output[:]
    outarray.write(_output, overwrite=gscript.overwrite())
コード例 #9
0
def main():
    """
    RichDEM flat resolution: give a gentle slope
    """
    # lazy import RICHDEM
    try:
        import richdem as rd
    except:
        g.message(flags='e',
                  message=('RichDEM not detected. Install pip3 and ' +
                           'then type at the command prompt: ' +
                           '"pip3 install richdem".'))

    _input = options['input']
    _output = options['output']

    # Check for overwrite
    _rasters = np.array(gscript.parse_command('g.list', type='raster').keys())
    if (_rasters == _output).any():
        g.message(flags='e', message="output would overwrite " + _output)

    dem = garray.array()
    dem.read(_input, null=np.nan)

    rd_input = rd.rdarray(dem, no_data=np.nan)
    rd_output = rd.ResolveFlats(rd_input)

    dem[:] = rd_output[:]
    dem.write(_output, overwrite=gscript.overwrite())
コード例 #10
0
    def get_slope(self):
        """ TODO """

        beau  = rd.rdarray(np.load('imgs/beauford.npz')['beauford'], no_data=-9999)
        slope = rd.TerrainAttribute(beau, attrib='slope_riserun')
        rd.rdShow(slope, axes=False, cmap='jet', figsize=(8,5.5))

        pass
コード例 #11
0
 def _numpy2richdem(self, in_array, no_data=-9999):
     '''
     slope and aspect calculations are performed by richdem, which
     requires data in rdarray format. this function converts numpy
     arrays into rdarrays.
     '''
     out_array = rd.rdarray(in_array, no_data=no_data)
     out_array.projection = self.projection
     cell_scale = np.around(a=self.side_len / self.resolution, decimals=5)
     out_array.geotransform = [0, cell_scale, 0, 0, 0, cell_scale]
     return out_array
コード例 #12
0
def filled_dem(ctx, cropped_dem_fp, filled_dem_fp):
    logger = ctx.obj['LOGGER']
    logger.info("Cropping DEM to watershed extent")
    with rasterio.open(cropped_dem_fp) as dataset:
        dem = dataset.read(1)
        rdem = richdem.rdarray(dem, no_data=dataset.nodata)
        filled_dem = richdem.FillDepressions(rdem)
        logger.info("Filled {} pixels".format(np.sum(filled_dem != rdem)))
        out_meta = dataset.meta
        with rasterio.open(filled_dem_fp, 'w', **out_meta) as out_dataset:
            out_dataset.write(filled_dem, indexes=1)
    logger.info("DONE")
コード例 #13
0
    def _create_richdem_properties(self):
        self._depression_free_dem = cp.deepcopy(
            rd.rdarray(
                self.grid.at_node["topographic__elevation"].reshape(self.grid.shape),
                no_data=-9999,
            )
        )
        self._depression_free_dem.geotransform = [0, 1, 0, 0, 0, -1]

        # Calculate SQUARED length adjacent
        self.grid.at_node["squared_length_adjacent"] = np.concatenate(
            (
                np.ones((self.grid.number_of_nodes, 4)),
                2 * np.ones((self.grid.number_of_nodes, 4)),
            ),
            axis=1,
        )

        self._closed = np.zeros(self._grid.number_of_nodes)
        self._closed[self._grid.status_at_node == NodeStatus.CLOSED] = 1
        self._closed = rd.rdarray(self._closed.reshape(self._grid.shape), no_data=-9999)
        self._closed.geotransform = [0, 1, 0, 0, 0, -1]
コード例 #14
0
ファイル: utils.py プロジェクト: KMarkert/hydrate
def terrain(elvDs, variable="elevation", fillDem=True, flowMethod='D8'):
    out = elvDs.copy()

    zScales = {
        0: 0.00000898,
        10: 0.00000912,
        20: 0.00000956,
        30: 0.00001036,
        40: 0.00001171,
        50: 0.00001395,
        60: 0.00001792,
        70: 0.00002619,
        80: 0.00005156
    }
    # calculat the geospatial information from the dataset
    elvDim = [elvDs.dims['lon'], elvDs.dims["lat"]]
    xres = float((elvDs.lon[1] - elvDs.lon[0]).values)
    yres = float((elvDs.lat[1] - elvDs.lat[0]).values)
    xinit = float((elvDs.lon[0]).values) - (xres / 2)
    yinit = float((elvDs.lat[0]).values) + (yres / 2)
    # get elevation values as np.ndarray
    elvVals = np.squeeze(elvDs[variable].values)
    rdem = rd.rdarray(elvVals, no_data=np.nan)
    rdem.projection = '''GEOGCS["WGS 84",
                            DATUM["WGS_1984",
                                SPHEROID["WGS 84",6378137,298.257223563,
                                    AUTHORITY["EPSG","7030"]],
                                AUTHORITY["EPSG","6326"]],
                            PRIMEM["Greenwich",0,
                                AUTHORITY["EPSG","8901"]],
                            UNIT["degree",0.0174532925199433,
                                AUTHORITY["EPSG","9122"]],
                            AUTHORITY["EPSG","4326"]]
                     '''
    rdem.geotransform = (xinit, xres, 0, yinit, 0, yres)
    if fillDem:
        filled = rd.FillDepressions(rdem,
                                    epsilon=True,
                                    in_place=False,
                                    topology='D8')
        rdem = rd.ResolveFlats(filled, in_place=False)

    zScale = zScales[np.around(yinit, decimals=-1)]

    slope = rd.TerrainAttribute(rdem, attrib='slope_percentage', zscale=zScale)
    accum = rd.FlowAccumulation(rdem, method=flowMethod)

    out["slope"] = (('time', 'lat', 'lon'), slope[np.newaxis, :, :])
    out["flowAcc"] = (('time', 'lat', 'lon'), accum[np.newaxis, :, :])

    return out
コード例 #15
0
 def remove_depressions(self):
     self._depression_free_dem = cp.deepcopy(
         rd.rdarray(
             self.grid.at_node["topographic__elevation"].reshape(self.grid.shape),
             no_data=-9999,
         )
     )
     self._depression_free_dem.geotransform = [0, 1, 0, 0, 0, -1]
     with self._suppress_output():
         self._depression_handler(self._depression_free_dem)
     self._sort[:] = np.argsort(
         np.array(self._depression_free_dem.reshape(self.grid.number_of_nodes))
     )
     self.grid.at_node["depression_free_elevation"] = self._depression_free_dem
コード例 #16
0
ファイル: filling.py プロジェクト: omarseleem92/lidar
def np2rdarray(in_array, no_data, projection, geotransform):
    """Converts an numpy array to rdarray.

    Args:
        in_array (np.array): The input numpy array.
        no_data (float): The no_data value of the array.
        projection (str): The projection of the image.
        geotransform (str): The geotransform of the image.

    Returns:
        object: The richDEM array.
    """
    out_array = rd.rdarray(in_array, no_data=no_data)
    out_array.projection = projection
    out_array.geotransform = geotransform
    return out_array
コード例 #17
0
def np2rdarray(in_array, no_data, projection, geotransform):
    """Converts numpy array to rdarray.

    Args:
        in_array (np.array): The input numpy array containing the image.
        no_data (float): The no_data value of the image.
        projection (str): The projection coordinate system of the image.
        geotransform (str): The geotransform of the image.

    Returns:
        rdarray: The richDEM array containing the image.
    """
    out_array = rd.rdarray(in_array, no_data=no_data)
    out_array.projection = projection
    out_array.geotransform = geotransform
    return out_array
コード例 #18
0
def main():
    """
    RichDEM depression breaching
    """

    options, flags = gscript.parser()
    _input = options['input']
    _output = options['output']
    _topology = options['topology']

    dem = garray.array()
    dem.read(_input, null=np.nan)

    rd_inout = rd.rdarray(dem, no_data=np.nan)
    rd.BreachDepressions(dem=rd_inout, in_place=True, topology=_topology)

    dem[:] = rd_inout[:]
    dem.write(_output, overwrite=gscript.overwrite())
コード例 #19
0
def main():
    """
    RichDEM flat resolution: give a gentle slope
    """
    
    options, flags = gscript.parser()
    _input = options['input']
    _output = options['output']
    _attribute = options['attribute']
    _zscale = float(options['zscale'])
    
    dem = garray.array()
    dem.read(_input, null=np.nan)
    
    rd_input = rd.rdarray(dem, no_data=np.nan)
    del dem
    rd_output = rd.TerrainAttribute(dem=rd_input, attrib=_attribute,
                                    zscale=_zscale)
    
    outarray = garray.array()
    outarray[:] = rd_output[:]
    outarray.write(_output, overwrite=gscript.overwrite())
コード例 #20
0
def main():
    """
    RichDEM flat resolution: give a gentle slope
    """

    options, flags = gscript.parser()
    _input = options['input']
    _output = options['output']

    # Check for overwrite
    _rasters = np.array(gscript.parse_command('g.list', type='raster').keys())
    if (_rasters == _output).any():
        g.message(flags='e', message="output would overwrite " + _output)

    dem = garray.array()
    dem.read(_input, null=np.nan)

    rd_input = rd.rdarray(dem, no_data=np.nan)
    rd_output = rd.ResolveFlats(rd_input)

    dem[:] = rd_output[:]
    dem.write(_output, overwrite=gscript.overwrite())
コード例 #21
0
ファイル: urban_helper.py プロジェクト: worldbank/GOST_Urban
    def process_dem(self, global_dem=''):
        ''' Download DEM from AWS, calculate slope
        '''
        # Download DEM

        if not os.path.exists(self.dem_file) and global_dem == '':
            tPrint("Downloading DEM")
            elevation.clip(bounds=self.inD.total_bounds, max_download_tiles=90000, output=self.dem_file, product='SRTM3')

        if not os.path.exists(self.dem_file) and not global_dem == '':
            tPrint("Downloading DEM")
            rMisc.clipRaster(rasterio.open(global_dem), self.inD, self.dem_file)
            
        # Calculate slope
        if not os.path.exists(self.slope_file) and os.path.exists(self.dem_file):
            tPrint("Calculating slope")
            in_dem = rasterio.open(self.dem_file)
            in_dem_data = in_dem.read()
            beau  = richdem.rdarray(in_dem_data[0,:,:], no_data=in_dem.meta['nodata'])
            slope = richdem.TerrainAttribute(beau, attrib='slope_riserun')
            meta = in_dem.meta.copy()
            meta.update(dtype = slope.dtype)
            with rasterio.open(self.slope_file, 'w', **meta) as outR:
                outR.write_band(1, slope)
コード例 #22
0
def generate_slope_aspect():
    """Generate slope and aspect from DEM."""
    dem_ds = xr.open_dataset(
        '/Users/kenzatazi/Downloads/GMTED2010_15n015_00625deg.nc')
    dem_ds = dem_ds.assign_coords({
        'nlat': dem_ds.latitude,
        'nlon': dem_ds.longitude
    })
    dem_ds = dem_ds.sel(nlat=slice(29, 34), nlon=slice(75, 83))

    elev_arr = dem_ds.elevation.values
    elev_rd_arr = rd.rdarray(elev_arr, no_data=np.nan)

    slope_rd_arr = rd.TerrainAttribute(elev_rd_arr, attrib='slope_riserun')
    slope_arr = np.array(slope_rd_arr)

    aspect_rd_arr = rd.TerrainAttribute(elev_rd_arr, attrib='aspect')
    aspect_arr = np.array(aspect_rd_arr)

    dem_ds['slope'] = (('nlat', 'nlon'), slope_arr)
    dem_ds['aspect'] = (('nlat', 'nlon'), aspect_arr)

    streamlined_dem_ds = dem_ds[['elevation', 'slope', 'aspect']]
    streamlined_dem_ds.to_netcdf('_Data/SRTM_data.nc')
コード例 #23
0
#del pre_φdtm

φdtm[φdtm == 100000] = np.NaN
plt.imshow(
    φdtm,
    cmap='Greys')  # displays better if first φdtm[φdtm == 100000] = np.NaN
plt.title(f'c = {c}')

#%% [markdown]
# Next we calculate the slope surface ```φslope```; max slope parameter, ```Slmin```; and min slope parameter,```Slmax```. In this case, Slmin
# and Slmax are established from the 65% and 90% quantiles of the cell
# values of the slope surface. We will use the handy TerrainAttribute function from RichDEM to find. ```φslope``'.

#%%
rda = rd.rdarray(φdtm, no_data=np.NaN)
φslope = rd.TerrainAttribute(rda, attrib='slope_riserun')
Slmin, Slmax = np.nanpercentile(φslope, [65, 90])

#%% [markdown]
# Then we classify points as ground if they are within δh of the reference surface given
# by  φdtm, and calculate the penetrability surfac, eφpnt.#%% [markdown]
# Then we classify points as ground if they are within δh of the reference surface given
# by  φdtm, and calculate the penetrability surfac, eφpnt.

#%%
# Classify as ground (2) if δi <= δh
S['Classification'] = (S['Z'] - φdtm[S['gridX'], S['gridY']] <= δh) * 2

# create φpnt
#φpnt = np.full_like(φdtm, np.NaN)
コード例 #24
0
 def transform_slope(self):
     self.dem_data = rd.rdarray(self.dem_data, no_data=-9999)
     self.dem_data = rd.TerrainAttribute(self.dem_data,
                                         attrib='slope_riserun')
コード例 #25
0
def loadfigures(pathascii, pathvis16R, pathxy, filename):
    '''
    pathascii = 'D:/ANALYSIS/SIMPLECRATERS_MOON/SLDEM_2013_COLDSPOTS/ascii/'
    pathvis8R = 'D:/ANALYSIS/SIMPLECRATERS_MOON/SLDEM_2013_COLDSPOTS/ascii_visible8R/'
    pathvis32R = 'D:/ANALYSIS/SIMPLECRATERS_MOON/SLDEM_2013_COLDSPOTS/ascii_visible/'
    pathxy = 'D:/ANALYSIS/SIMPLECRATERS_MOON/SLDEM_2013_COLDSPOTS/double_detrending/data/'
    
    
    
    pathascii = '/uio/kant/geo-ceed-u1/nilscp/Desktop/astra/TMP_DOWNLOAD/ascii/'
    pathvis8R = '/uio/kant/geo-ceed-u1/nilscp/Desktop/astra/TMP_DOWNLOAD/ascii_visible8R/'
    pathvis32R = '/uio/kant/geo-ceed-u1/nilscp/Desktop/astra/TMP_DOWNLOAD/ascii_visible/'
    pathxy = 'D:/ANALYSIS/SIMPLECRATERS_MOON/SLDEM_2013_COLDSPOTS/double_detrending/data/'
    filename = 'cpcrater0000'
    '''
    name_ascii = pathascii + filename + '.asc'
    name_crater_txt = pathxy + filename + 'XY.txt'
    name_vis16R = pathvis16R + filename + '_visible.asc'

    # should be good this way
    data = readASCII(name_ascii)
    datavis16R = readASCII(name_vis16R)

    # load data and constrain size of the array
    (xc, yc, data, ncenterx,
     ncentery) = constrainASCII(pathascii, name_ascii, data)
    (xcv1, ycv1, datav1, ncenterxv1,
     ncenteryv1) = constrainASCII(pathvis16R, name_vis16R, datavis16R)

    # load xy
    dataxy = np.loadtxt(name_crater_txt, skiprows=1, delimiter=";")
    datax = dataxy[:, 0]
    datay = dataxy[:, 1]

    # slope
    datareload = rd.rdarray(data, no_data=-9999)
    slope = rd.TerrainAttribute(datareload, attrib='slope_riserun')

    # profile_curvatyre
    pfc = rd.TerrainAttribute(datareload, attrib='profile_curvature')

    # planform curvature
    pfc2 = rd.TerrainAttribute(datareload, attrib='planform_curvature')

    # curvature
    pfc3 = rd.TerrainAttribute(datareload, attrib='curvature')
    # I could calculate the slope and the curvature and then plot it

    # plot figures (1) visible 32R, (1) visible 8R, (2) DTM 8R, (3) Slope 8R, (4) Curvature 8R
    # when (4) is open, engage

    fig2 = plt.figure(1)
    plt.pcolormesh(xcv1, ycv1, datav1)
    plt.colorbar()

    fig3 = plt.figure(2)
    plt.pcolormesh(xc, yc, data)
    plt.colorbar()

    fig4 = plt.figure(3)
    plt.pcolormesh(xc, yc, slope)
    plt.colorbar()

    return fig4
コード例 #26
0
 def display_slope(self):
     self.dem_data = rd.rdarray(self.dem_data, no_data=-9999)
     rd.rdShow(self.dem_data, axes=False, cmap='magma', figsize=(8, 5.5))
コード例 #27
0
ファイル: dem.py プロジェクト: voltron75/jeolib-pyjeo
    bbox = [args.ulx, args.uly, args.lrx, args.lry]
    jimdem = pj.Jim(Path(demfn),
                    bbox=bbox,
                    tileindex=args.tileindex,
                    tiletotal=args.tiletotal,
                    overlap=args.overlap)
else:
    jimdem = pj.Jim(Path(demfn),
                    tileindex=args.tileindex,
                    tiletotal=args.tiletotal,
                    overlap=args.overlap)

if args.t_srs is not None:
    jimdem.geometry.warp(args.t_srs)

if args.output_dem is not None:
    jimdem.io.write(args.output_dem, co=['COMPRESS=LZW', 'TILED=YES'])

jimdem.pixops.convert('GDT_Float32')

jimdem[jimdem <= 0] = -9999
dem_richdem = rd.rdarray(jimdem.np(), no_data=-9999)
dem_richdem.geotransform = jimdem.properties.getGeoTransform()
dem_richdem.projection = jimdem.properties.getProjection()

slope = rd.TerrainAttribute(dem_richdem, attrib=args.attribute)
jimdem.np()[:] = slope
jimdem.properties.setNoDataVals(-9999)

jimdem.io.write(args.output, co=['COMPRESS=LZW', 'TILED=YES'])
コード例 #28
0
    def get_d8_without_depression(self, dem_img, pad=3):
        dem_rd = rd.rdarray(dem_img, no_data=-9999)
        dem_filled_rd = np.array(rd.FillDepressions(dem_rd, in_place=False))
        d8_without_depression = self.get_d8(dem_filled_rd, pad=pad)

        return d8_without_depression
コード例 #29
0
def np2rdarray(in_array, no_data, projection, geotransform):
    out_array = rd.rdarray(in_array, no_data=no_data)
    out_array.projection = projection
    out_array.geotransform = geotransform
    return out_array
コード例 #30
0
    return np.sqrt(dx * dx + dy * dy)


def np_curvature(x, y, z):
    d = y[1, 0] - y[0, 0]
    dy, dx = np.gradient(z, d)
    dz = np.sqrt(dx * dx + dy * dy)
    dy, dx = np.gradient(dz, d)
    return np.sqrt(dx * dx + dy * dy)


# Gaussian hill
n = 234
x, y, z = gaussian_hill_elevation(n)
d = y[1, 0] - y[0, 0]
sca = rd.FlowAccumulation(rd.rdarray(z, no_data=-9999),
                          method='Freeman',
                          exponent=1.1)
sca *= d

fg, ax = pl.subplots(1, 3)
im = ax[0].imshow(z, cmap=pl.cm.cividis_r)
cb = fg.colorbar(im, ax=ax[0], orientation='horizontal')
cb.set_label('Elevation')

im = ax[1].imshow(sca, cmap=pl.cm.viridis_r)
cb = fg.colorbar(im, ax=ax[1], orientation='horizontal')
cb.set_label('SCA (Freeman 1991 flow accumulation, MFD)')

v = gaussian_hill_sca(n) - sca
vmin = v.min()