コード例 #1
0
ファイル: enhcMD.py プロジェクト: deepmodeling/rid-kit
def prep_graph(graph_files, walker_path):
    # copy graph files
    cwd = os.getcwd()
    for ii in graph_files:
        file_name = os.path.basename(ii)
        abs_path = os.path.abspath(ii)
        rel_path = os.path.relpath(abs_path, os.path.abspath(walker_path))
        checkfile(walker_path + file_name)
        os.chdir(walker_path)
        os.symlink(rel_path, walker_path + file_name)
        os.chdir(cwd)
コード例 #2
0
def make_conf(nconf,
              res_path,
              walker_idx,
              walker_path,
              sel_idx,
              jdata,
              mol_path,
              conf_start=0,
              conf_every=1,
              custom_mdp=None):
    mol_path = os.path.abspath(mol_path) + "/"
    mol_files = ["topol.top"]
    nsteps = jdata["res_nsteps"]
    frame_freq = jdata["res_frame_freq"]
    dt = jdata["res_dt"]
    temperature = jdata["res_temperature"]
    itp_files = glob.glob(mol_path + "*.itp")
    for ii in range(conf_start, nconf, conf_every):
        work_path = res_path + ((walker_format + ".%06d") %
                                (walker_idx, sel_idx[ii])) + "/"
        os.makedirs(work_path)
        make_grompp(work_path + "grompp.mdp",
                    "res",
                    nsteps,
                    frame_freq,
                    temperature=temperature,
                    dt=dt,
                    define="",
                    custom_mdp=custom_mdp)
        for jj in mol_files:
            checkfile(work_path + jj)
            shutil.copy(mol_path + jj, work_path)
        for itp_ in itp_files:
            shutil.copy(itp_, work_path)

        conf_file = walker_path + enhc_out_conf + \
            ("conf%d.gro" % sel_idx[int(ii)])
        checkfile(work_path + "conf.gro")
        tmp_cwd = os.getcwd()
        os.chdir(work_path)
        os.symlink(os.path.relpath(conf_file), "conf.gro")
        os.chdir(tmp_cwd)
コード例 #3
0
ファイル: enhcMD.py プロジェクト: deepmodeling/rid-kit
def make_enhc(iter_index,
              json_file,
              graph_files,
              mol_dir,
              cv_file,
              base_dir='./',
              custom_mdp=None):
    base_dir = os.path.abspath(base_dir) + "/"
    json_file = os.path.abspath(json_file)
    cv_file = os.path.abspath(cv_file)
    graph_files.sort()
    fp = open(json_file, 'r')
    jdata = json.load(fp)
    fp.close()
    numb_walkers = jdata["numb_walkers"]
    enhc_trust_lvl_1 = jdata["bias_trust_lvl_1"]
    enhc_trust_lvl_2 = jdata["bias_trust_lvl_2"]
    nsteps = jdata["bias_nsteps"]
    frame_freq = jdata["bias_frame_freq"]
    num_of_cluster_threshold = jdata["num_of_cluster_threshold"]
    dt = jdata["bias_dt"]
    temperature = jdata["bias_temperature"]

    iter_name = make_iter_name(iter_index)
    work_path = base_dir + iter_name + "/" + enhc_name + "/"
    mol_path = os.path.abspath(mol_dir) + "/"

    conf_list = glob.glob(mol_path + "*gro")
    conf_list.sort()
    assert (len(conf_list) >=
            numb_walkers), "not enough conf files in mol dir %s" % mol_path

    create_path(work_path)

    mol_files = ["topol.top"]
    for walker_idx in range(numb_walkers):
        walker_path = work_path + make_walker_name(walker_idx) + "/"
        create_path(walker_path)

        make_grompp(walker_path + "grompp.mdp", "bias", nsteps,
                    frame_freq, temperature=temperature, dt=dt, define='', custom_mdp=custom_mdp)
        # make_grompp(walker_path + "grompp_restraint.mdp", "res", nsteps, frame_freq, temperature=temperature, dt=dt, define='-DPOSRE')

        for ii in mol_files:
            checkfile(walker_path + ii)
            shutil.copy(mol_path + ii, walker_path)

        # copy conf file
        conf_file = conf_list[walker_idx]
        checkfile(walker_path + "conf.gro")
        shutil.copy(conf_file, walker_path + "conf.gro")
        checkfile(walker_path + "conf_init.gro")
        shutil.copy(conf_file, walker_path + "conf_init.gro")

        # if have prev confout.gro, use as init conf
        if iter_index > 0:
            prev_enhc_path = base_dir + \
                make_iter_name(iter_index-1) + "/" + enhc_name + \
                "/" + make_walker_name(walker_idx) + "/"
            prev_enhc_path = os.path.abspath(prev_enhc_path) + "/"
            if os.path.isfile(prev_enhc_path + "confout.gro"):
                os.remove(walker_path + "conf.gro")
                rel_prev_enhc_path = os.path.relpath(
                    prev_enhc_path + "confout.gro", walker_path)
                os.symlink(rel_prev_enhc_path, walker_path + "conf.gro")
            else:
                raise RuntimeError(
                    "cannot find prev output conf file  " + prev_enhc_path + 'confout.gro')
            log_task("use conf of iter " + make_iter_name(iter_index -
                                                          1) + " walker " + make_walker_name(walker_idx))

            enhc_trust_lvl_1, enhc_trust_lvl_2 = adjust_lvl(
                prev_enhc_path, num_of_cluster_threshold, jdata)

        np.savetxt(walker_path+'trust_lvl1.dat',
                   [enhc_trust_lvl_1], fmt='%.6f')

        make_plumed(walker_path, "dpbias", conf_file, cv_file)
        make_plumed(walker_path, "bf", conf_file, cv_file)

        prep_graph(graph_files, walker_path)
        # config plumed
        graph_list = get_graph_list(graph_files)
        conf_enhc_plumed(walker_path + enhc_plm, "enhc", graph_list, enhc_trust_lvl_1=enhc_trust_lvl_1,
                         enhc_trust_lvl_2=enhc_trust_lvl_2, frame_freq=frame_freq, enhc_out_plm=enhc_out_plm)
        conf_enhc_plumed(walker_path + enhc_bf_plm, "bf", graph_list,
                         frame_freq=frame_freq, enhc_out_plm=enhc_out_plm)

        if len(graph_list) == 0:
            log_task("brute force MD without NN acc")
        else:
            log_task("use NN model(s): " + graph_list)
            log_task("set trust l1 and l2: %f %f" %
                     (enhc_trust_lvl_1, enhc_trust_lvl_2))
    print("Enhanced sampling has prepared.")