コード例 #1
0
ファイル: core.py プロジェクト: phausamann/rigid-body-motion
    def get_transformation(self, timestamps=None, arrays_first=True):
        """ Get the transformation across all reference frames.

        Parameters
        ----------
        timestamps: array_like, shape (n_timestamps,), optional
            Timestamps to which the transformation should be matched. If not
            provided the matcher will call `get_timestamps` for the target
            timestamps.

        arrays_first: bool, default True
            If True and timestamps aren't provided, the first array in the
            list defines the sampling of the timestamps. Otherwise, the first
            reference frame in the list defines the sampling.

        Returns
        -------
        translation: array_like, shape (3,) or (n_timestamps, 3)
            The translation across all reference frames.

        rotation: array_like, shape (4,) or (n_timestamps, 4)
            The rotation across all reference frames.

        timestamps: array_like, shape (n_timestamps,) or None
            The timestamps for which the transformation is defined.
        """
        from rigid_body_motion.utils import rotate_vectors

        if timestamps is None:
            timestamps = self.get_timestamps(arrays_first)

        translation = np.zeros(3) if timestamps is None else np.zeros((1, 3))
        rotation = quaternion(1.0, 0.0, 0.0, 0.0)

        for frame in self.frames:
            t, r = self._transform_from_frame(frame, timestamps)
            if frame.inverse:
                translation = rotate_vectors(
                    1 / as_quat_array(r), translation - np.array(t)
                )
                rotation = 1 / as_quat_array(r) * rotation
            else:
                translation = rotate_vectors(
                    as_quat_array(r), translation
                ) + np.array(t)
                rotation = as_quat_array(r) * rotation

        return translation, as_float_array(rotation), timestamps
コード例 #2
0
    def transform_vectors(
        self,
        arr,
        to_frame,
        axis=-1,
        time_axis=0,
        timestamps=None,
        return_timestamps=False,
    ):
        """ Transform array of vectors from this frame to another.

        Parameters
        ----------
        arr: array_like
            The array to transform.

        to_frame: str or ReferenceFrame
            The target reference frame. If str, the frame will be looked up
            in the registry under that name.

        axis: int, default -1
            The axis of the array representing the spatial coordinates of the
            vectors.

        time_axis: int, default 0
            The axis of the array representing the timestamps of the vectors.

        timestamps: array_like, optional
            The timestamps of the vectors, corresponding to the `time_axis`
            of the array. If not None, the axis defined by `time_axis` will be
            re-sampled to the timestamps for which the transformation is
            defined.

        return_timestamps: bool, default False
            If True, also return the timestamps after the transformation.

        Returns
        -------
        arr_transformed: array_like
            The transformed array.

        ts: array_like, shape (n_timestamps,) or None
            The timestamps after the transformation.
        """
        arr, arr_ts = self._validate_input(arr, axis, 3, timestamps, time_axis)
        matcher = self._get_matcher(to_frame, arrays=[(arr, arr_ts)])
        t, r, ts = matcher.get_transformation()
        arr, _ = matcher.get_arrays(ts)

        r = self._expand_singleton_axes(r, arr.ndim)
        arr = rotate_vectors(r, arr, axis=axis)

        # undo time axis swap
        if time_axis is not None:
            arr = np.swapaxes(arr, 0, time_axis)

        if not return_timestamps:
            return arr
        else:
            return arr, ts
コード例 #3
0
def plot_quaternions(arr, base=None, ax=None, figsize=(6, 6), **kwargs):
    """ Plot an array of quaternions.

    Parameters
    ----------
    arr: array_like, shape (4,) or (N, 4)
        Array of quaternions to plot.

    base: array_like, shape (4,) or (N, 4), optional
        If provided, base points of the quaternions.

    ax: matplotlib.axes.Axes instance, optional
        If provided, plot the points onto these axes.

    figsize:
        If `ax` is not provided, create a figure of this size.

    kwargs:
        Additional keyword arguments passed to ax.quiver().

    Returns
    -------
    lines: list of Line3DCollection
        A list of lines representing the plotted data.
    """
    if ax is None:
        fig = plt.figure(figsize=figsize)
        ax = fig.add_subplot(111, projection="3d")

    vx = rotate_vectors(arr, np.array((1, 0, 0)), one_to_one=False)
    vy = rotate_vectors(arr, np.array((0, 1, 0)), one_to_one=False)
    vz = rotate_vectors(arr, np.array((0, 0, 1)), one_to_one=False)

    lines = [
        plot_vectors(vx, base, ax, color="r", length=0.5, **kwargs),
        plot_vectors(vy, base, ax, color="g", length=0.5, **kwargs),
        plot_vectors(vz, base, ax, color="b", length=0.5, **kwargs),
    ]

    return lines
コード例 #4
0
def make_test_motion(
    n_samples,
    freq=1,
    max_angle=np.pi / 2,
    fs=1000,
    stack=True,
    inverse=False,
    offset=None,
):
    """ Create sinusoidal linear and angular motion around all three axes. """
    import pandas as pd

    if inverse:
        max_angle = -max_angle

    trajectory = (
        max_angle *
        np.sin(2 * np.pi * freq * np.arange(n_samples) / fs)[:, np.newaxis])

    if stack:
        ax = np.array((1.0, 0.0, 0.0))[np.newaxis, :]
        ay = np.array((0.0, 1.0, 0.0))[np.newaxis, :]
        az = np.array((0.0, 0.0, 1.0))[np.newaxis, :]
        tx, ty, tz = np.array_split(trajectory, 3)
        translation = np.vstack((tx * ax, ty * ay, tz * az))
    else:
        translation = np.tile(trajectory, (1, 3))

    rotation = as_float_array(from_rotation_vector(translation))

    if offset is not None:
        translation += rotate_vectors(as_quat_array(rotation),
                                      np.array(offset)[np.newaxis, :])

    timestamps = pd.date_range(start=0, periods=n_samples, freq=f"{1/fs}S")

    return translation, rotation, timestamps
コード例 #5
0
    def _init_arrays(translation, rotation, timestamps, inverse):
        """ Initialize translation, rotation and timestamp arrays. """
        if timestamps is not None:
            timestamps = np.asarray(timestamps)
            if timestamps.ndim != 1:
                raise ValueError("timestamps must be one-dimensional.")
            t_shape = (len(timestamps), 3)
            r_shape = (len(timestamps), 4)
        else:
            t_shape = (3, )
            r_shape = (4, )

        if translation is not None:
            translation = np.asarray(translation)
            if translation.shape != t_shape:
                raise ValueError(
                    f"Expected translation to be of shape {t_shape}, got "
                    f"{translation.shape}")
        else:
            translation = np.zeros(t_shape)

        if rotation is not None:
            rotation = np.asarray(rotation)
            if rotation.shape != r_shape:
                raise ValueError(
                    f"Expected rotation to be of shape {r_shape}, got "
                    f"{rotation.shape}")
        else:
            rotation = np.zeros(r_shape)
            rotation[..., 0] = 1.0

        if inverse:
            rotation = qinv(rotation)
            translation = -rotate_vectors(rotation, translation)

        return translation, rotation, timestamps
コード例 #6
0
def iterative_closest_point(
    v1,
    v2,
    dim=None,
    axis=None,
    init_transform=None,
    max_iterations=20,
    tolerance=1e-3,
):
    """ Iterative closest point algorithm matching two arrays of vectors.

    Finds the rotation `r` and the translation `t` such that:

    .. math:: v_2 \simeq rot(r, v_1) + t

    Parameters
    ----------
    v1: array_like, shape (..., 3, ...)
        The first array of vectors.

    v2: array_like, shape (..., 3, ...)
        The second array of vectors.

    dim: str, optional
        If the first array is a DataArray, the name of the dimension
        representing the spatial coordinates of the vectors.

    axis: int, optional
        The axis of the arrays representing the spatial coordinates of the
        vectors. Defaults to the last axis of the arrays.

    init_transform: tuple, optional
        Initial guess as (translation, rotation) tuple.

    max_iterations: int, default 20
        Maximum number of iterations.

    tolerance: float, default 1e-3
        Abort if the mean distance error between the transformed arrays does
        not improve by more than this threshold between iterations.

    Returns
    -------
    translation: array_like, shape (3,)
        Translation of transform.

    rotation: array_like, shape (4,)
        Rotation of transform.

    References
    ----------
    Adapted from https://github.com/ClayFlannigan/icp

    Notes
    -----
    For points with known correspondences (e.g. timeseries of positions), it is
    recommended to interpolate the points to a common sampling base and use the
    `best_fit_transform` method.

    See Also
    --------
    best_fit_transform, best_fit_rotation
    """  # noqa
    v1, v2, was_dataarray = _reshape_vectors(v1,
                                             v2,
                                             axis,
                                             dim,
                                             same_shape=False)

    v1_new = np.copy(v1)

    # apply the initial pose estimation
    if init_transform is not None:
        t, r = init_transform
        v1_new = rotate_vectors(np.asarray(r), v1_new) + np.asarray(t)

    prev_error = 0

    for i in range(max_iterations):
        # find the nearest neighbors between the current source and destination
        # points
        idx, distances = _nearest_neighbor(v1_new, v2)

        # compute the transformation between the current source and nearest
        # destination points
        t, r = best_fit_transform(v1_new, v2[idx])

        # update the current source
        v1_new = rotate_vectors(r, v1_new) + t

        # check error
        mean_error = np.mean(distances)
        if np.abs(prev_error - mean_error) < tolerance:
            break
        prev_error = mean_error

    # calculate final transformation
    translation, rotation = best_fit_transform(v1, v1_new)

    if was_dataarray:
        translation, rotation = _make_transform_dataarrays(
            translation, rotation)

    return translation, rotation
コード例 #7
0
    def test_rotate_vectors(self):
        """"""
        v = np.ones((10, 3))
        q = np.tile(from_euler_angles(yaw=np.pi / 4, return_quaternion=True),
                    10)
        vr = np.vstack((np.zeros(10), np.sqrt(2) * np.ones(10), np.ones(10))).T

        # single quaternion, single vector
        vr_act = rotate_vectors(q[0], v[0])
        np.testing.assert_allclose(vr[0], vr_act, rtol=1.0)

        # single quaternion, multiple vectors
        vr_act = rotate_vectors(q[0], v)
        np.testing.assert_allclose(vr, vr_act, rtol=1.0)

        # single quaternion, explicit axis
        vr_act = rotate_vectors(q[0], v, axis=1)
        np.testing.assert_allclose(vr, vr_act, rtol=1.0)

        # multiple quaternions, multiple vectors
        vr_act = rotate_vectors(q, v)
        np.testing.assert_allclose(vr, vr_act)

        # different axis
        vr_act = rotate_vectors(q, v.T, axis=0)
        np.testing.assert_allclose(vr.T, vr_act)

        # singleton expansion
        vr_act = rotate_vectors(q[:, None], v[None, ...])
        np.testing.assert_allclose(np.tile(vr, (10, 1, 1)), vr_act)

        # float dtype
        vr_act = rotate_vectors(as_float_array(q[0]), v[0])
        np.testing.assert_allclose(vr[0], vr_act, rtol=1.0)

        with pytest.raises(ValueError):
            rotate_vectors(q, v.T)

        with pytest.raises(ValueError):
            rotate_vectors(q, np.ones((10, 4)))