コード例 #1
0
ファイル: sparse_optimizers.py プロジェクト: tawawhite/rigl
 def snip_op():
     all_masks = pruning.get_masks()
     assigner = sparse_utils.get_mask_init_fn(all_masks,
                                              self._mask_init_method,
                                              self._default_sparsity,
                                              self._custom_sparsity_map,
                                              mask_fn=snip_fn)
     with ops.control_dependencies([assigner]):
         assign_op = state_ops.assign(self.is_snipped,
                                      True,
                                      name='assign_true_after_snipped')
     return assign_op
コード例 #2
0
 def scaffold_fn():
   """For initialization, passed to the estimator."""
   if FLAGS.initial_value_checkpoint:
     initialize_parameters_from_ckpt(FLAGS.initial_value_checkpoint)
   all_masks = pruning.get_masks()
   assigner = sparse_utils.get_mask_init_fn(
       all_masks, FLAGS.mask_init_method, FLAGS.end_sparsity,
       CUSTOM_SPARSITY_MAP)
   def init_fn(scaffold, session):
     """A callable for restoring variable from a checkpoint."""
     del scaffold  # Unused.
     session.run(assigner)
   return tf.train.Scaffold(init_fn=init_fn)
コード例 #3
0
def main(unused_args):
    tf.set_random_seed(FLAGS.seed)
    tf.get_variable_scope().set_use_resource(True)
    np.random.seed(FLAGS.seed)

    # Load the MNIST data and set up an iterator.
    mnist_data = input_data.read_data_sets(FLAGS.mnist,
                                           one_hot=False,
                                           validation_size=0)
    train_images = mnist_data.train.images
    test_images = mnist_data.test.images
    if FLAGS.input_mask_path:
        reader = tf.train.load_checkpoint(FLAGS.input_mask_path)
        input_mask = reader.get_tensor('layer1/mask')
        indices = np.sum(input_mask, axis=1) != 0
        train_images = train_images[:, indices]
        test_images = test_images[:, indices]
    dataset = tf.data.Dataset.from_tensor_slices(
        (train_images, mnist_data.train.labels.astype(np.int32)))
    num_batches = mnist_data.train.images.shape[0] // FLAGS.batch_size
    dataset = dataset.shuffle(buffer_size=mnist_data.train.images.shape[0])
    batched_dataset = dataset.repeat(FLAGS.num_epochs).batch(FLAGS.batch_size)
    iterator = batched_dataset.make_one_shot_iterator()

    test_dataset = tf.data.Dataset.from_tensor_slices(
        (test_images, mnist_data.test.labels.astype(np.int32)))
    num_test_images = mnist_data.test.images.shape[0]
    test_dataset = test_dataset.repeat(FLAGS.num_epochs).batch(num_test_images)
    test_iterator = test_dataset.make_one_shot_iterator()

    # Set up loss function.
    use_model_pruning = FLAGS.training_method != 'baseline'

    if FLAGS.network_type == 'fc':
        cross_entropy_train, _ = mnist_network_fc(
            iterator.get_next(), model_pruning=use_model_pruning)
        cross_entropy_test, accuracy_test = mnist_network_fc(
            test_iterator.get_next(),
            reuse=True,
            model_pruning=use_model_pruning)
    else:
        raise RuntimeError(FLAGS.network + ' is an unknown network type.')

    # Remove extra added ones. Current implementation adds the variables twice
    # to the collection. Improve this hacky thing.
    # TODO test the following with the convnet or any other network.
    if use_model_pruning:
        for k in ('masks', 'masked_weights', 'thresholds', 'kernel'):
            # del tf.get_collection_ref(k)[2]
            # del tf.get_collection_ref(k)[2]
            collection = tf.get_collection_ref(k)
            del collection[len(collection) // 2:]
            print(tf.get_collection_ref(k))

    # Set up optimizer and update ops.
    global_step = tf.train.get_or_create_global_step()
    batch_per_epoch = mnist_data.train.images.shape[0] // FLAGS.batch_size

    if FLAGS.optimizer != 'adam':
        if not use_model_pruning:
            boundaries = [
                int(round(s * batch_per_epoch)) for s in [60, 70, 80]
            ]
        else:
            boundaries = [
                int(round(s * batch_per_epoch))
                for s in [FLAGS.lr_drop_epoch, FLAGS.lr_drop_epoch + 20]
            ]
        learning_rate = tf.train.piecewise_constant(
            global_step,
            boundaries,
            values=[
                FLAGS.learning_rate / (3.**i)
                for i in range(len(boundaries) + 1)
            ])
    else:
        learning_rate = FLAGS.learning_rate

    if FLAGS.optimizer == 'adam':
        opt = tf.train.AdamOptimizer(FLAGS.learning_rate)
    elif FLAGS.optimizer == 'momentum':
        opt = tf.train.MomentumOptimizer(learning_rate,
                                         FLAGS.momentum,
                                         use_nesterov=FLAGS.use_nesterov)
    elif FLAGS.optimizer == 'sgd':
        opt = tf.train.GradientDescentOptimizer(learning_rate)
    else:
        raise RuntimeError(FLAGS.optimizer + ' is unknown optimizer type')
    custom_sparsities = {
        'layer2': FLAGS.end_sparsity * FLAGS.sparsity_scale,
        'layer3': FLAGS.end_sparsity * 0
    }

    if FLAGS.training_method == 'set':
        # We override the train op to also update the mask.
        opt = sparse_optimizers.SparseSETOptimizer(
            opt,
            begin_step=FLAGS.maskupdate_begin_step,
            end_step=FLAGS.maskupdate_end_step,
            grow_init=FLAGS.grow_init,
            frequency=FLAGS.maskupdate_frequency,
            drop_fraction=FLAGS.drop_fraction,
            drop_fraction_anneal=FLAGS.drop_fraction_anneal)
    elif FLAGS.training_method == 'static':
        # We override the train op to also update the mask.
        opt = sparse_optimizers.SparseStaticOptimizer(
            opt,
            begin_step=FLAGS.maskupdate_begin_step,
            end_step=FLAGS.maskupdate_end_step,
            grow_init=FLAGS.grow_init,
            frequency=FLAGS.maskupdate_frequency,
            drop_fraction=FLAGS.drop_fraction,
            drop_fraction_anneal=FLAGS.drop_fraction_anneal)
    elif FLAGS.training_method == 'momentum':
        # We override the train op to also update the mask.
        opt = sparse_optimizers.SparseMomentumOptimizer(
            opt,
            begin_step=FLAGS.maskupdate_begin_step,
            end_step=FLAGS.maskupdate_end_step,
            momentum=FLAGS.s_momentum,
            frequency=FLAGS.maskupdate_frequency,
            drop_fraction=FLAGS.drop_fraction,
            grow_init=FLAGS.grow_init,
            drop_fraction_anneal=FLAGS.drop_fraction_anneal,
            use_tpu=False)
    elif FLAGS.training_method == 'rigl':
        # We override the train op to also update the mask.
        opt = sparse_optimizers.SparseRigLOptimizer(
            opt,
            begin_step=FLAGS.maskupdate_begin_step,
            end_step=FLAGS.maskupdate_end_step,
            grow_init=FLAGS.grow_init,
            frequency=FLAGS.maskupdate_frequency,
            drop_fraction=FLAGS.drop_fraction,
            drop_fraction_anneal=FLAGS.drop_fraction_anneal,
            initial_acc_scale=FLAGS.rigl_acc_scale,
            use_tpu=False)
    elif FLAGS.training_method == 'snip':
        opt = sparse_optimizers.SparseSnipOptimizer(
            opt,
            mask_init_method=FLAGS.mask_init_method,
            default_sparsity=FLAGS.end_sparsity,
            custom_sparsity_map=custom_sparsities,
            use_tpu=False)
    elif FLAGS.training_method in ('scratch', 'baseline', 'prune'):
        pass
    else:
        raise ValueError('Unsupported pruning method: %s' %
                         FLAGS.training_method)

    train_op = opt.minimize(cross_entropy_train, global_step=global_step)

    if FLAGS.training_method == 'prune':
        hparams_string = (
            'begin_pruning_step={0},sparsity_function_begin_step={0},'
            'end_pruning_step={1},sparsity_function_end_step={1},'
            'target_sparsity={2},pruning_frequency={3},'
            'threshold_decay={4}'.format(FLAGS.prune_begin_step,
                                         FLAGS.prune_end_step,
                                         FLAGS.end_sparsity,
                                         FLAGS.pruning_frequency,
                                         FLAGS.threshold_decay))
        pruning_hparams = pruning.get_pruning_hparams().parse(hparams_string)
        pruning_hparams.set_hparam(
            'weight_sparsity_map',
            ['{0}:{1}'.format(k, v) for k, v in custom_sparsities.items()])
        print(pruning_hparams)
        pruning_obj = pruning.Pruning(pruning_hparams, global_step=global_step)
        with tf.control_dependencies([train_op]):
            train_op = pruning_obj.conditional_mask_update_op()
    weight_sparsity_levels = pruning.get_weight_sparsity()
    global_sparsity = sparse_utils.calculate_sparsity(pruning.get_masks())
    tf.summary.scalar('test_accuracy', accuracy_test)
    tf.summary.scalar('global_sparsity', global_sparsity)
    for k, v in zip(pruning.get_masks(), weight_sparsity_levels):
        tf.summary.scalar('sparsity/%s' % k.name, v)
    if FLAGS.training_method in ('prune', 'snip', 'baseline'):
        mask_init_op = tf.no_op()
        tf.logging.info('No mask is set, starting dense.')
    else:
        all_masks = pruning.get_masks()
        mask_init_op = sparse_utils.get_mask_init_fn(all_masks,
                                                     FLAGS.mask_init_method,
                                                     FLAGS.end_sparsity,
                                                     custom_sparsities)

    if FLAGS.save_model:
        saver = tf.train.Saver()
    init_op = tf.global_variables_initializer()
    hyper_params_string = '_'.join([
        FLAGS.network_type,
        str(FLAGS.batch_size),
        str(FLAGS.learning_rate),
        str(FLAGS.momentum), FLAGS.optimizer,
        str(FLAGS.l2_scale), FLAGS.training_method,
        str(FLAGS.prune_begin_step),
        str(FLAGS.prune_end_step),
        str(FLAGS.end_sparsity),
        str(FLAGS.pruning_frequency),
        str(FLAGS.seed)
    ])
    tf.io.gfile.makedirs(FLAGS.save_path)
    filename = os.path.join(FLAGS.save_path, hyper_params_string + '.txt')
    merged_summary_op = tf.summary.merge_all()

    # Run session.
    if not use_model_pruning:
        with tf.Session() as sess:
            summary_writer = tf.summary.FileWriter(
                FLAGS.save_path, graph=tf.get_default_graph())
            print('Epoch', 'Epoch time', 'Test loss', 'Test accuracy')
            sess.run([init_op])
            tic = time.time()
            with tf.io.gfile.GFile(filename, 'w') as outputfile:
                for i in range(FLAGS.num_epochs * num_batches):
                    sess.run([train_op])

                    if (i % num_batches) == (-1 % num_batches):
                        epoch_time = time.time() - tic
                        loss, accuracy, summary = sess.run([
                            cross_entropy_test, accuracy_test,
                            merged_summary_op
                        ])
                        # Write logs at every test iteration.
                        summary_writer.add_summary(summary, i)
                        log_str = '%d, %.4f, %.4f, %.4f' % (
                            i // num_batches, epoch_time, loss, accuracy)
                        print(log_str)
                        print(log_str, file=outputfile)
                        tic = time.time()
            if FLAGS.save_model:
                saver.save(sess, os.path.join(FLAGS.save_path, 'model.ckpt'))
    else:
        with tf.Session() as sess:
            summary_writer = tf.summary.FileWriter(
                FLAGS.save_path, graph=tf.get_default_graph())
            log_str = ','.join([
                'Epoch', 'Iteration', 'Test loss', 'Test accuracy',
                'G_Sparsity', 'Sparsity Layer 0', 'Sparsity Layer 1'
            ])
            sess.run(init_op)
            sess.run(mask_init_op)
            tic = time.time()
            mask_records = {}
            with tf.io.gfile.GFile(filename, 'w') as outputfile:
                print(log_str)
                print(log_str, file=outputfile)
                for i in range(FLAGS.num_epochs * num_batches):
                    if (FLAGS.mask_record_frequency > 0
                            and i % FLAGS.mask_record_frequency == 0):
                        mask_vals = sess.run(pruning.get_masks())
                        # Cast into bool to save space.
                        mask_records[i] = [
                            a.astype(np.bool) for a in mask_vals
                        ]
                    sess.run([train_op])
                    weight_sparsity, global_sparsity_val = sess.run(
                        [weight_sparsity_levels, global_sparsity])
                    if (i % num_batches) == (-1 % num_batches):
                        epoch_time = time.time() - tic
                        loss, accuracy, summary = sess.run([
                            cross_entropy_test, accuracy_test,
                            merged_summary_op
                        ])
                        # Write logs at every test iteration.
                        summary_writer.add_summary(summary, i)
                        log_str = '%d, %d, %.4f, %.4f, %.4f, %.4f, %.4f' % (
                            i // num_batches, i, loss, accuracy,
                            global_sparsity_val, weight_sparsity[0],
                            weight_sparsity[1])
                        print(log_str)
                        print(log_str, file=outputfile)
                        mask_vals = sess.run(pruning.get_masks())
                        if FLAGS.network_type == 'fc':
                            sparsities, sizes = get_compressed_fc(mask_vals)
                            print('[COMPRESSED SPARSITIES/SHAPE]: %s %s' %
                                  (sparsities, sizes))
                            print('[COMPRESSED SPARSITIES/SHAPE]: %s %s' %
                                  (sparsities, sizes),
                                  file=outputfile)
                        tic = time.time()
            if FLAGS.save_model:
                saver.save(sess, os.path.join(FLAGS.save_path, 'model.ckpt'))
            if mask_records:
                np.save(os.path.join(FLAGS.save_path, 'mask_records'),
                        mask_records)
コード例 #4
0
ファイル: sparse_optimizers.py プロジェクト: tawawhite/rigl
    def apply_gradients(self, grads_and_vars, global_step=None, name=None):
        """Wraps the original apply_gradient of the optimizer.

    Args:
      grads_and_vars: List of (gradient, variable) pairs as returned by
        `compute_gradients()`.
      global_step: Optional `Variable` to increment by one after the variables
        have been updated.
      name: Optional name for the returned operation.  Default to the name
        passed to the `Optimizer` constructor.

    Returns:
      An `Operation` that applies the specified gradients. If `global_step`
      was not None, that operation also increments `global_step`.
    """
        optimizer_update = self._optimizer.apply_gradients(
            grads_and_vars, global_step=global_step, name=name)
        vars_dict = {
            re.findall('(.+)/weights:0', var.name)[0]: var
            for var in self.get_weights()
        }

        def dnw_fn(mask, sparsity, dtype):
            """Creates a mask with smallest magnitudes with deterministic sparsity.

      Args:
        mask: tf.Tensor, used to obtain correct corresponding gradient.
        sparsity: float, between 0 and 1.
        dtype: tf.dtype, type of the return value.

      Returns:
        tf.Tensor
      """
            del dtype
            var_name = sparse_utils.mask_extract_name_fn(mask.name)
            v = vars_dict[var_name]
            score_drop = math_ops.abs(v)
            n_total = np.prod(score_drop.shape.as_list())
            n_prune = sparse_utils.get_n_zeros(n_total, sparsity)
            n_keep = n_total - n_prune

            # Sort the entire array since the k needs to be constant for TPU.
            _, sorted_indices = nn_ops.top_k(array_ops.reshape(
                score_drop, [-1]),
                                             k=n_total)
            sorted_indices_ex = array_ops.expand_dims(sorted_indices, 1)
            # We will have zeros after having `n_keep` many ones.
            new_values = array_ops.where(
                math_ops.range(n_total) < n_keep,
                array_ops.ones_like(sorted_indices, dtype=mask.dtype),
                array_ops.zeros_like(sorted_indices, dtype=mask.dtype))
            new_mask = array_ops.scatter_nd(sorted_indices_ex, new_values,
                                            new_values.shape)
            return array_ops.reshape(new_mask, mask.shape)

        with ops.control_dependencies([optimizer_update]):
            all_masks = self.get_masks()
            mask_update_op = sparse_utils.get_mask_init_fn(
                all_masks,
                self._mask_init_method,
                self._default_sparsity,
                self._custom_sparsity_map,
                mask_fn=dnw_fn)

        return mask_update_op
コード例 #5
0
ファイル: resnet_train_eval.py プロジェクト: polceanum/rigl
def wide_resnet_w_pruning(features, labels, mode, params):
  """The model_fn for ResNet wide with pruning.

  Args:
    features: A float32 batch of images.
    labels: A int32 batch of labels.
    mode: Specifies whether training or evaluation.
    params: Dictionary of parameters passed to the model.

  Returns:
    A EstimatorSpec for the model

  Raises:
      ValueError: if mode is not recognized as train or eval.
  """

  if isinstance(features, dict):
    features = features['feature']

  train_dir = params['train_dir']
  training_method = params['training_method']

  global_step, accuracy, top_5_accuracy, logits = build_model(
      mode=mode,
      images=features,
      labels=labels,
      training_method=training_method,
      num_classes=FLAGS.num_classes,
      depth=FLAGS.resnet_depth,
      width=FLAGS.resnet_width)

  if mode == tf.estimator.ModeKeys.PREDICT:
    predictions = {
        'classes': tf.argmax(logits, axis=1),
        'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
    }
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions=predictions,
        export_outputs={
            'classify': tf.estimator.export.PredictOutput(predictions)
        })

  with tf.name_scope('computing_cross_entropy_loss'):
    entropy_loss = tf.losses.sparse_softmax_cross_entropy(
        labels=labels, logits=logits)
    tf.summary.scalar('cross_entropy_loss', entropy_loss)

  with tf.name_scope('computing_total_loss'):
    total_loss = tf.losses.get_total_loss(add_regularization_losses=True)

  if mode == tf.estimator.ModeKeys.TRAIN:
    hooks, eval_metrics, train_op = train_fn(training_method, global_step,
                                             total_loss, train_dir, accuracy,
                                             top_5_accuracy)
  elif mode == tf.estimator.ModeKeys.EVAL:
    hooks = None
    train_op = None
    with tf.name_scope('summaries'):
      eval_metrics = create_eval_metrics(labels, logits)
  else:
    raise ValueError('mode not recognized as training or eval.')

  if FLAGS.training_method in ('prune', 'snip', 'baseline'):
    scaffold = None
    tf.logging.info('No mask is set, starting dense.')
  else:
    all_masks = pruning.get_masks()
    assigner = sparse_utils.get_mask_init_fn(
        all_masks, FLAGS.mask_init_method, FLAGS.end_sparsity, {})
    def init_fn(scaffold, session):
      """A callable for restoring variable from a checkpoint."""
      del scaffold  # Unused.
      session.run(assigner)
    scaffold = tf.train.Scaffold(init_fn=init_fn)

  return tf.estimator.EstimatorSpec(
      mode=mode,
      training_hooks=hooks,
      loss=total_loss,
      train_op=train_op,
      eval_metric_ops=eval_metrics,
      scaffold=scaffold)