コード例 #1
0
    def create_learner(self):
        A, B, _ = self.decoder.ssm.get_ssm_matrices(
            update_rate=self.decoder.binlen)

        Q = np.mat(np.diag([1., 1, 1, 0, 0, 0, 0]))
        R = self.cost_fn_scale * np.mat(np.eye(B.shape[1]))
        fb_ctrl = feedback_controllers.LQRController(A, B, Q, R)
        self.learner = clda.FeedbackControllerLearner(1, fb_ctrl)
        self.learn_flag = True
コード例 #2
0
    def __init__(self, *args, **kwargs):
        self.ssm = StateSpaceEndptVel2D()

        A, B, _ = self.ssm.get_ssm_matrices()
        Q = np.mat(np.diag([.5, .5, .5, .1, .1, .1, 0]))
        R = 10**6 * np.mat(np.eye(B.shape[1]))

        self.fb_ctrl = feedback_controllers.LQRController(A, B, Q, R)
        super(SimObs, self).__init__(*args, **kwargs)
コード例 #3
0
    def __init__(self, *args, **kwargs):
        dec_fname = os.path.expandvars('$FA_GROM_DATA/grom20160201_01_RMLC02011515.pkl')
        self.decoder = pickle.load(open(dec_fname))
        self.ssm = StateSpaceEndptVel2D()

        A, B, _ = self.ssm.get_ssm_matrices()
        Q = np.mat(np.diag([.5, .5, .5, .1, .1, .1, 0]))
        R = 10**6*np.mat(np.eye(B.shape[1]))
        
        self.fb_ctrl = feedback_controllers.LQRController(A, B, Q, R)
        super(SimObsCLDA, self).__init__(*args, **kwargs)
コード例 #4
0
 def create_learner(self):
     F, K = self.decoder.filt.get_sskf()
     pos_gain = np.mean(K[[0, 2], :] / K[[3, 5], :])
     I = np.mat(np.eye(3))
     B = np.mat(np.vstack([pos_gain * I, I, np.zeros(3)]))
     A = np.mat(F)
     Q = np.mat(np.diag([1., 1, 1, 0, 0, 0, 0]))
     R = np.mat(np.eye(3) * 1000)
     fb_ctrl = feedback_controllers.LQRController(A, B, Q, R)
     self.batch_size = int(self.batch_time / self.decoder.binlen)
     self.learner = clda.FeedbackControllerLearner(self.batch_size,
                                                   fb_ctrl,
                                                   style='additive')
コード例 #5
0
    def __init__(self, ssm, Q, R, **kwargs):
        '''
        Constructor for SSMLFCAssister

        Parameters
        ----------
        ssm: riglib.bmi.state_space_models.StateSpace instance
            The state-space model's A and B matrices represent the system to be controlled
        args: positional arguments
            These are ignored (none are necessary)
        kwargs: keyword arguments
            The constructor must be supplied with the 'kin_chain' kwarg, which must have the attribute 'link_lengths'
            This is specific to 'KinematicChain' plants.

        Returns
        -------
        SSMLFCAssister instance

        '''
        if ssm is None:
            raise ValueError("SSMLFCAssister requires a state space model!")

        A, B, W = ssm.get_ssm_matrices()
        self.lqr_controller = feedback_controllers.LQRController(A, B, Q, R)