class CircularTarget(object): def __init__(self, target_radius=2, target_color=(1, 0, 0, .5), starting_pos=np.zeros(3)): self.target_color = target_color self.default_target_color = tuple(self.target_color) self.target_radius = target_radius self.target_color = target_color self.position = starting_pos self.int_position = starting_pos self._pickle_init() def _pickle_init(self): self.sphere = Sphere(radius=self.target_radius, color=self.target_color) self.graphics_models = [self.sphere] self.sphere.translate(*self.position) def move_to_position(self, new_pos): self.int_position = new_pos self.drive_to_new_pos() def drive_to_new_pos(self): raise NotImplementedError
def __init__(self, *args, **kwargs): super(TargetCapture, self).__init__(*args, **kwargs) self.origin_target = Sphere(radius=self.origin_size, color=(1, 0, 0, .5)) self.add_model(self.origin_target) self.cursor = Sphere(radius=self.cursor_radius, color=(.5, 0, .5, 1)) self.add_model(self.cursor)
def _pickle_init(self): super(VirtualKinChainWithToolLink, self)._pickle_init() self.tool_tip_cursor = Sphere(radius=self.link_radii[-1] / 2, color=RED) self.tool_base_cursor = Sphere(radius=self.link_radii[-1] / 2, color=BLUE) self.graphics_models = [ self.link_groups[0], self.tool_tip_cursor, self.tool_base_cursor ]
def __init__(self, *args, **kwargs): # Add the target and cursor locations to the task data to be saved to # file self.dtype = [('target', 'f', (3, )), ('cursor', 'f', (3, ))] super(ManualControl, self).__init__(*args, **kwargs) self.terminus_target = Sphere(radius=self.terminus_size, color=(1, 0, 0, .5)) self.add_model(self.terminus_target) # Initialize target location variables self.location = np.array([0, 0, 0]) self.target_xz = np.array([0, 0])
def __init__(self, *args, **kwargs): super(TentacleMultiConfigObstacleAvoidance, self).__init__(*args, **kwargs) ## Create an obstacle object, hidden by default self.obstacle = Sphere(radius=self.obstacle_radius + 0.6, color=(0, 0, 1, .5)) self.obstacle_on = False self.obstacle_pos = np.ones(3) * np.nan self.hit_obstacle = False self.add_model(self.obstacle)
def __init__(self, *args, **kwargs): # Add the target and cursor locations to the task data to be saved to # file super(TestGraphics, self).__init__(*args, **kwargs) self.dtype = [('target', 'f', (3,)), ('cursor', 'f', (3,)), (('target_index', 'i', (1,)))] self.target1 = Sphere(radius=self.target_radius, color=(1,0,0,.5)) self.add_model(self.target1) self.target2 = Sphere(radius=self.target_radius, color=(1,0,0,.5)) self.add_model(self.target2) # Initialize target location variable self.target_location = np.array([0,0,0])
class TestGraphics(Sequence, Window): status = dict(wait=dict(stop=None), ) #initial state state = "wait" target_radius = 2. #create targets, cursor objects, initialize def __init__(self, *args, **kwargs): # Add the target and cursor locations to the task data to be saved to # file #super(TestGraphics, self).__init__(*args, **kwargs) super().__init__(*args, **kwargs) self.dtype = [('target', 'f', (3, )), ('cursor', 'f', (3, )), (('target_index', 'i', (1, )))] self.target1 = Sphere(radius=self.target_radius, color=(1, 0, 0, .5)) self.add_model(self.target1) self.target2 = Sphere(radius=self.target_radius, color=(1, 0, 0, 0.5)) self.add_model(self.target2) # Initialize target location variable self.target_location = np.array([0.0, 0.0, 0.0]) ##### HELPER AND UPDATE FUNCTIONS #### #<<<<<<< HEAD def _get_renderer(self): return stereo.MirrorDisplay(self.window_size, self.fov, 1, 1024, self.screen_dist, self.iod) def _cycle(self): super()._cycle() #### STATE FUNCTIONS #### def _while_wait(self): #print("_while_wait") delta_movement = np.array([0, 0, 0.01]) self.target_location += delta_movement self.target1.translate(self.target_location[0], self.target_location[1], self.target_location[2], reset=True) self.requeue() self.draw_world() print('current target 1 position ' + np.array2string(self.target_location))
class BMIControlManipulatedFB(bmimultitasks.BMIControlMulti): feedback_rate = traits.Float(60, desc="Rate in hz that cursor position is updated on screen (best if factor of 60)") task_update_rate = traits.Float(60, desc="Rate in hz that decoded cursor position is updated within task (best if factor of 60)") ordered_traits = ['session_length', 'assist_level', 'assist_time', 'feedback_rate', 'task_update_rate'] def __init__(self, *args, **kwargs): super(BMIControlManipulatedFB, self).__init__(*args, **kwargs) self.visible_cursor = Sphere(radius=self.cursor_radius, color=(1,1,1,1)) self.add_model(self.visible_cursor) self.cursor_visible = True def init(self): self.dtype.append(('visible_cursor','f8',3)) super(BMIControlManipulatedFB, self).init() self.feedback_num = int(60.0/self.feedback_rate) self.task_update_num = int(60.0/self.task_update_rate) self.loopcount = 0 def update_cursor(self): ''' Update the cursor's location and visibility status.''' pt = self.get_cursor_location() prev = self.cursor_visible self.cursor_visible = False if prev != self.cursor_visible: self.show_object(self.cursor, show=False) #self.cursor.detach() self.requeue() #update the "real" cursor location only according to specified task update rate if self.loopcount%self.task_update_num==0: if pt is not None: self.move_cursor(pt) #update the visible cursor location only according to specified feedback rate if self.loopcount%self.feedback_num==0: loc = self.cursor.xfm.move self.visible_cursor.translate(*loc,reset=True) def _cycle(self): ''' Overwriting parent methods since this one works differently''' self.update_assist_level() self.task_data['assist_level'] = self.current_assist_level self.update_cursor() self.task_data['cursor'] = self.cursor.xfm.move.copy() self.task_data['target'] = self.target_location.copy() self.task_data['target_index'] = self.target_index self.task_data['visible_cursor'] = self.visible_cursor.xfm.move.copy() self.loopcount += 1 #write to screen self.draw_world()
def __init__(self, *args, **kwargs): super(ApproachAvoidanceTask, self).__init__(*args, **kwargs) self.cursor_visible = True # Add graphics models for the plant and targets to the window self.plant = plantlist[self.plant_type] self.plant_vis_prev = True # Add graphics models for the plant and targets to the window if hasattr(self.plant, 'graphics_models'): for model in self.plant.graphics_models: self.add_model(model) self.current_pt=np.zeros([3]) #keep track of current pt self.last_pt=np.zeros([3]) #kee ## Declare cursor #self.dtype.append(('cursor', 'f8', (3,))) if 0: #hasattr(self.arm, 'endpt_cursor'): self.cursor = self.arm.endpt_cursor else: self.cursor = Sphere(radius=self.cursor_radius, color=self.cursor_color) self.add_model(self.cursor) self.cursor.translate(*self.get_arm_endpoint(), reset=True) ## Instantiate the targets. Target 1 is center target, Target H is target with high probability of reward, Target L is target with low probability of reward. self.target1 = Sphere(radius=self.target_radius, color=self.target_color) # center target self.add_model(self.target1) self.targetR = Sphere(radius=self.target_radius, color=self.target_color) # left target self.add_model(self.targetH) self.targetL = Sphere(radius=self.target_radius, color=self.target_color) # right target self.add_model(self.targetL) ###STOPPED HERE: should define Rect target here and then adapt length during task. Also, ### be sure to change all targetH instantiations to targetR. # Initialize target location variable. self.target_location1 = np.array([0,0,0]) self.target_locationR = np.array([-self.starting_dist,0,0]) self.target_locationL = np.array([self.starting_dist,0,0]) self.target1.translate(*self.target_location1, reset=True) self.targetH.translate(*self.target_locationR, reset=True) self.targetL.translate(*self.target_locationL, reset=True) # Initialize colors for high probability and low probability target. Color will not change. self.targetH.color = self.color_targets*self.color1 + (1 - self.color_targets)*self.color2 # high is magenta if color_targets = 1, juicyorange otherwise self.targetL.color = (1 - self.color_targets)*self.color1 + self.color_targets*self.color2 #set target colors self.target1.color = (1,0,0,.5) # center target red # Initialize target location variable self.target_location = np.array([0, 0, 0]) # Declare any plant attributes which must be saved to the HDF file at the _cycle rate for attr in self.plant.hdf_attrs: self.add_dtype(*attr)
def __init__(self, *args, **kwargs): if SIM: self.rx_port = ('localhost', 60000) self.tx_port = ('localhost', 60001) else: self.rx_port = ('10.0.0.1', 60000) self.tx_port = ('10.0.0.14', 60001) self.has_force_sensor = kwargs.pop('has_force_sensor', True) self.hdf_attrs = [('joint_angles', 'f8', (5,)), ('joint_velocities', 'f8', (5,)), ('joint_applied_torque', 'f8', (5,)),] if self.has_force_sensor and not ('endpt_force' in self.hdf_attrs): self.hdf_attrs.append(('endpt_force', 'f8', (1,))) # Initialize sockets for transmitting velocity commands / receiving sensor data tx_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.tx_sock = tx_sock ## kinematic chain self.kin_chain = ActiveExoChain() # joint limits in radians, based on mechanical limits---some configurations # may still be outside the comfortable range for the subject self.kin_chain.joint_limits = [(-1.25, 1.25), (0, 1.7), (-0.95, 0.9), (0, 1.4), (-1.5, 1.5)] ## Graphics, for experimenter only self.link_lengths = link_lengths self.cursor = Sphere(radius=arm_radius/2, color=arm_color) self.upperarm_graphics = Cylinder(radius=arm_radius, height=self.link_lengths[0], color=arm_color) # self.upperarm_graphics.xfm.translate(*exo_chain_graphics_base_loc) self.forearm_graphics = Cone(radius1=arm_radius, radius2=arm_radius/3, height=self.link_lengths[1], color=arm_color) self.forearm_graphics.xfm.translate(*exo_chain_graphics_base_loc) self.graphics_models = [self.upperarm_graphics, self.forearm_graphics, self.cursor] self.enabled = True super(ActiveExoPlant, self).__init__(*args, **kwargs)
class VirtualKinChainWithToolLink(RobotArmGen2D): def _pickle_init(self): super(VirtualKinChainWithToolLink, self)._pickle_init() self.tool_tip_cursor = Sphere(radius=self.link_radii[-1] / 2, color=RED) self.tool_base_cursor = Sphere(radius=self.link_radii[-1] / 2, color=BLUE) self.graphics_models = [ self.link_groups[0], self.tool_tip_cursor, self.tool_base_cursor ] def _update_link_graphics(self): super(VirtualKinChainWithToolLink, self)._update_link_graphics() joint_angles = self.calc_joint_angles() spatial_joint_pos = self.kin_chain.spatial_positions_of_joints( joint_angles) self.tool_tip_cursor.translate(*spatial_joint_pos[:, -1], reset=True) self.tool_base_cursor.translate(*spatial_joint_pos[:, -2], reset=True)
def __init__(self, *args, **kwargs): super(ArmPlant, self).__init__(*args, **kwargs) self.cursor_visible = True # Initialize the arm self.arm = ik.test_3d self.arm_vis_prev = True if self.arm_class == 'CursorPlant': pass else: self.dtype.append(('joint_angles', 'f8', (self.arm.num_joints, ))) self.dtype.append(('arm_visible', 'f8', (1, ))) self.add_model(self.arm) ## Declare cursor self.dtype.append(('cursor', 'f8', (3, ))) self.cursor = Sphere(radius=self.cursor_radius, color=self.cursor_color) self.add_model(self.cursor) self.cursor.translate(*self.arm.get_endpoint_pos(), reset=True)
def __init__(self, *args, **kwargs): super(BMIControlManipulatedFB, self).__init__(*args, **kwargs) self.visible_cursor = Sphere(radius=self.cursor_radius, color=(1,1,1,1)) self.add_model(self.visible_cursor) self.cursor_visible = True
class MovementTraining(Window): status = dict(wait=dict(stop=None, move_start="movement"), movement=dict(move_end="reward", move_stop="wait", stop=None), reward=dict(reward_end="wait")) log_exclude = set((("wait", "move_start"), ("movement", "move_stop"))) #initial state state = "wait" path = [[0, 0, 0]] speed = 0 frame_offset = 2 over = 0 inside = 0 #settable traits movement_distance = traits.Float( 1, desc="Minimum movement distance to trigger reward") speed_range = traits.Tuple( 20, 30, desc="Range of movement speed in cm/s to trigger reward") reward_time = traits.Float(14) #initialize def __init__(self, **kwargs): super(MovementTraining, self).__init__(**kwargs) self.cursor = Sphere(radius=.5, color=(.5, 0, .5, 1)) self.add_model(self.cursor) def update_cursor(self): #get data from 13th marker on motion tracker- take average of all data points since last poll pt = self.motiondata.get() if len(pt) > 0: pt = pt[:, 14, :] # NOTE!!! The marker on the hand was changed from #0 to #14 on # 5/19/13 after LED #0 broke. All data files saved before this date # have LED #0 controlling the cursor. pt = pt[~np.isnan(pt).any(1)] if len(pt) > 0: pt = pt.mean(0) self.path.append(pt) #ignore y direction t = pt * .25 t[1] = 0 #move cursor to marker location self.cursor.translate(*t[:3], reset=True) else: self.path.append(self.path[-1]) if len(self.path) > self.frame_offset: self.path.pop(0) d = np.sqrt((self.path[-1][0] - self.path[0][0])**2 + (self.path[-1][1] - self.path[0][1])**2 + (self.path[-1][2] - self.path[0][2])**2) self.speed = d / (self.frame_offset / 60) if self.speed > self.speed_range[0]: self.over += 1 if self.speed_range[0] < self.speed < self.speed_range[1]: self.inside += 1 #write to screen self.draw_world() def _start_wait(self): self.over = 0 self.inside = 0 def _while_wait(self): self.update_cursor() def _while_movement(self): self.update_cursor() def _while_reward(self): self.update_cursor() def _test_move_start(self, ts): return self.over > self.frame_offset def _test_move_end(self, ts): return ts > self.movement_distance / self.speed_range[0] def _test_move_stop(self, ts): return self.inside > self.frame_offset def _test_reward_end(self, ts): return ts > self.reward_time
class ArmPlant(Window): ''' This task creates a RobotArm object and allows it to move around the screen based on either joint or endpoint positions. There is a spherical cursor at the end of the arm. The links of the arm can be visible or hidden. ''' background = (0, 0, 0, 1) arm_visible = traits.Bool( True, desc='Specifies whether entire arm is displayed or just endpoint') cursor_radius = traits.Float(.5, desc="Radius of cursor") cursor_color = (.5, 0, .5, 1) arm_class = traits.OptionsList(*plantlist, bmi3d_input_options=plantlist.keys()) starting_pos = (5, 0, 5) def __init__(self, *args, **kwargs): super(ArmPlant, self).__init__(*args, **kwargs) self.cursor_visible = True # Initialize the arm self.arm = ik.test_3d self.arm_vis_prev = True if self.arm_class == 'CursorPlant': pass else: self.dtype.append(('joint_angles', 'f8', (self.arm.num_joints, ))) self.dtype.append(('arm_visible', 'f8', (1, ))) self.add_model(self.arm) ## Declare cursor self.dtype.append(('cursor', 'f8', (3, ))) self.cursor = Sphere(radius=self.cursor_radius, color=self.cursor_color) self.add_model(self.cursor) self.cursor.translate(*self.arm.get_endpoint_pos(), reset=True) def _cycle(self): ''' Calls any update functions necessary and redraws screen. Runs 60x per second by default. ''' ## Run graphics commands to show/hide the arm if the visibility has changed if self.arm_class != 'CursorPlant': if self.arm_visible != self.arm_vis_prev: self.arm_vis_prev = self.arm_visible self.show_object(self.arm, show=self.arm_visible) self.move_arm() self.update_cursor() if self.cursor_visible: self.task_data['cursor'] = self.cursor.xfm.move.copy() else: #if the cursor is not visible, write NaNs into cursor location saved in file self.task_data['cursor'] = np.array([np.nan, np.nan, np.nan]) if self.arm_class != 'CursorPlant': if self.arm_visible: self.task_data['arm_visible'] = 1 else: self.task_data['arm_visible'] = 0 super(ArmPlant, self)._cycle() ## Functions to move the cursor using keyboard/mouse input def get_mouse_events(self): import pygame events = [] for btn in pygame.event.get( (pygame.MOUSEBUTTONDOWN, pygame.MOUSEBUTTONUP)): events = events + [btn.button] return events def get_key_events(self): import pygame return pygame.key.get_pressed() def move_arm(self): ''' allows use of keyboard keys to test movement of arm. Use QW/OP for joint movements, arrow keys for endpoint movements ''' import pygame keys = self.get_key_events() joint_speed = (np.pi / 6) / 60 hand_speed = .2 x, y, z = self.arm.get_endpoint_pos() if keys[pygame.K_RIGHT]: x = x - hand_speed self.arm.set_endpoint_pos(np.array([x, 0, z])) if keys[pygame.K_LEFT]: x = x + hand_speed self.arm.set_endpoint_pos(np.array([x, 0, z])) if keys[pygame.K_DOWN]: z = z - hand_speed self.arm.set_endpoint_pos(np.array([x, 0, z])) if keys[pygame.K_UP]: z = z + hand_speed self.arm.set_endpoint_pos(np.array([x, 0, z])) if self.arm.num_joints == 2: xz, xy = self.get_arm_joints() e = np.array([xz[0], xy[0]]) s = np.array([xz[1], xy[1]]) if keys[pygame.K_q]: s = s - joint_speed self.set_arm_joints([e[0], s[0]], [e[1], s[1]]) if keys[pygame.K_w]: s = s + joint_speed self.set_arm_joints([e[0], s[0]], [e[1], s[1]]) if keys[pygame.K_o]: e = e - joint_speed self.set_arm_joints([e[0], s[0]], [e[1], s[1]]) if keys[pygame.K_p]: e = e + joint_speed self.set_arm_joints([e[0], s[0]], [e[1], s[1]]) if self.arm.num_joints == 4: jts = self.get_arm_joints() keyspressed = [ keys[pygame.K_q], keys[pygame.K_w], keys[pygame.K_e], keys[pygame.K_r] ] for i in range(self.arm.num_joints): if keyspressed[i]: jts[i] = jts[i] + joint_speed self.set_arm_joints(jts) def get_cursor_location(self): return self.arm.get_endpoint_pos() def set_arm_endpoint(self, pt, **kwargs): self.arm.set_endpoint_pos(pt, **kwargs) def set_arm_joints(self, angle_xz, angle_xy): self.arm.set_intrinsic_coordinates(angle_xz, angle_xy) def get_arm_joints(self): return self.arm.get_intrinsic_coordinates() def update_cursor(self): ''' Update the cursor's location and visibility status. ''' pt = self.get_cursor_location() if pt is not None: self.move_cursor(pt) def move_cursor(self, pt): ''' Move the cursor object to the specified 3D location. ''' if not hasattr(self.arm, 'endpt_cursor'): self.cursor.translate(*pt[:3], reset=True)
class TargetCapture(Sequence, FixationTraining): status = dict(wait=dict(start_trial="origin", stop=None), origin=dict(enter_target="origin_hold", stop=None), origin_hold=dict(leave_early="hold_penalty", hold="reward"), reward=dict(reward_end="target_change"), hold_penalty=dict(penalty_end="pre_target_change"), pre_target_change=dict(tried_enough='target_change', not_tried_enough='wait'), target_change=dict(target_change_end='wait')) #create settable traits origin_size = traits.Float(1, desc="Radius of origin targets" ) #add error if target is smaller than cursor origin_hold_time = traits.Float(2, desc="Length of hold required at origin") hold_penalty_time = traits.Float( 3, desc="Length of penalty time for target hold error") exit_radius = 1.5 #Multiplier for the actual radius which is considered 'exiting' the target no_data_count = 0 tries = 0 scale_factor = 3.5 #scale factor for converting hand movement to screen movement (1cm hand movement = 3.5cm cursor movement) cursor_radius = .5 def __init__(self, *args, **kwargs): super(TargetCapture, self).__init__(*args, **kwargs) self.origin_target = Sphere(radius=self.origin_size, color=(1, 0, 0, .5)) self.add_model(self.origin_target) self.cursor = Sphere(radius=self.cursor_radius, color=(.5, 0, .5, 1)) self.add_model(self.cursor) def _start_wait(self): super(TargetCapture, self)._start_wait() #set target color self.origin_target.color = (1, 0, 0, .5) #hide target from previous trial self.show_origin(False) def show_origin(self, show=False): if show: self.origin_target.attach() else: self.origin_target.detach() self.requeue() def _start_origin(self): if self.tries == 0: #retrieve location of next origin target o = self.next_trial.T[0] #move target to correct location self.origin_target.translate(*o, reset=True) #make visible self.show_origin(True) def _end_origin_hold(self): #change target color self.origin_target.color = (0, 1, 0, 0.5) def _start_hold_penalty(self): self.tries += 1 #hide target self.show_origin(False) def _start_target_change(self): self.tries = 0 def _test_target_change_end(self, ts): return True def _test_enter_target(self, ts): #get the current cursor location and target location, return true if center of cursor is inside target (has to be close enough to center to be fully inside) c = self.cursor.xfm.move t = self.origin_target.xfm.move d = np.sqrt((c[0] - t[0])**2 + (c[1] - t[1])**2 + (c[2] - t[2])**2) return d <= self.origin_target.radius - self.cursor.radius def _test_leave_early(self, ts): c = self.cursor.xfm.move t = self.origin_target.xfm.move d = np.sqrt((c[0] - t[0])**2 + (c[1] - t[1])**2 + (c[2] - t[2])**2) rad = self.origin_target.radius - self.cursor.radius return d > rad * self.exit_radius def _test_hold(self, ts): return ts >= self.origin_hold_time def _test_penalty_end(self, ts): if self.state == "fixation_penalty": return ts > self.fixation_penalty_time else: return ts > self.hold_penalty_time def _test_tried_enough(self, ts): return self.tries == 3 def _test_not_tried_enough(self, ts): return self.tries != 3 def _update(self, pt): if len(pt) > 0: self.cursor.translate(*pt[:3], reset=True) #if no data has come in for at least 3 frames, hide cursor elif self.no_data_count > 2: self.no_data_count += 1 self.cursor.detach() self.requeue() else: self.no_data_count += 1 def update_cursor(self): #get data from 1st marker on motion tracker- take average of all data points since last poll pt = self.motiondata.get() if len(pt) > 0: pt = pt[:, 14, :] # NOTE!!! The marker on the hand was changed from #0 to #14 on # 5/19/13 after LED #0 broke. All data files saved before this date # have LED #0 controlling the cursor. conds = pt[:, 3] inds = np.nonzero((conds >= 0) & (conds != 4)) if len(inds[0]) > 0: pt = pt[inds[0], :3] #convert units from mm to cm and scale to desired amount pt = pt.mean(0) * .1 * self.scale_factor #ignore y direction pt[1] = 0 #move cursor to marker location self._update(pt) else: self.no_data_count += 1 else: self.no_data_count += 1 #write to screen self.draw_world() def calc_trial_num(self): '''Calculates the current trial count''' trialtimes = [ state[1] for state in self.state_log if state[0] in ['reward', 'timeout_penalty', 'hold_penalty'] ] return len(trialtimes) def calc_rewards_per_min(self, window): '''Calculates the Rewards/min for the most recent window of specified number of seconds in the past''' rewardtimes = np.array( [state[1] for state in self.state_log if state[0] == 'reward']) if (self.get_time() - self.task_start_time) < window: divideby = (self.get_time() - self.task_start_time) / 60.0 else: divideby = window / 60.0 return np.sum(rewardtimes >= (self.get_time() - window)) / divideby def calc_success_rate(self, window): '''Calculates the rewarded trials/initiated trials for the most recent window of specified length in sec''' trialtimes = np.array([ state[1] for state in self.state_log if state[0] in ['reward', 'timeout_penalty', 'hold_penalty'] ]) rewardtimes = np.array( [state[1] for state in self.state_log if state[0] == 'reward']) if len(trialtimes) == 0: return 0.0 else: return float( np.sum(rewardtimes >= (self.get_time() - window))) / np.sum( trialtimes >= (self.get_time() - window)) def update_report_stats(self): '''Function to update any relevant report stats for the task. Values are saved in self.reportstats, an ordered dictionary. Keys are strings that will be displayed as the label for the stat in the web interface, values can be numbers or strings. Called every time task state changes.''' super(TargetCapture, self).update_report_stats() self.reportstats['Trial #'] = self.calc_trial_num() self.reportstats['Reward/min'] = np.round( self.calc_rewards_per_min(120), decimals=2) self.reportstats['Success rate'] = str( np.round(self.calc_success_rate(120) * 100.0, decimals=2)) + '%' def _while_wait(self): self.update_cursor() def _while_origin(self): self.update_cursor() def _while_origin_hold(self): self.update_cursor() def _while_fixation_penalty(self): self.update_cursor() def _while_hold_penalty(self): self.update_cursor() def _while_reward(self): self.update_cursor() def _while_pre_target_change(self): self.update_cursor() def _while_target_change(self): self.update_cursor()
def _pickle_init(self): self.sphere = Sphere(radius=self.target_radius, color=self.target_color) self.graphics_models = [self.sphere] self.sphere.translate(*self.position)
def __init__(self, **kwargs): super(TestBoundary, self).__init__(**kwargs) # Create a small sphere for each of the 6 boundary marks self.xmin = Sphere(radius=.1, color=(.5, 0, .5, 1)) self.add_model(self.xmin) self.xmax = Sphere(radius=.1, color=(.5, 0, .5, 1)) self.add_model(self.xmax) self.ymin = Sphere(radius=.1, color=(.5, 0, .5, 1)) self.add_model(self.ymin) self.ymax = Sphere(radius=.1, color=(.5, 0, .5, 1)) self.add_model(self.ymax) self.zmin = Sphere(radius=.1, color=(.5, 0, .5, 1)) self.add_model(self.zmin) self.zmax = Sphere(radius=.1, color=(.5, 0, .5, 1)) self.add_model(self.zmax)
class TentacleMultiConfigObstacleAvoidance(BMIJointPerturb): status = dict( wait=dict(start_trial="premove", stop=None), premove=dict(premove_complete="target"), target=dict(enter_target="hold", timeout="timeout_penalty", stop=None, hit_obstacle="obstacle_penalty"), hold=dict(leave_early="hold_penalty", hold_complete="targ_transition"), targ_transition=dict(trial_complete="reward", trial_abort="wait", trial_incomplete="target", trial_restart="premove"), timeout_penalty=dict(timeout_penalty_end="targ_transition"), hold_penalty=dict(hold_penalty_end="targ_transition"), obstacle_penalty=dict(obstacle_penalty_end="targ_transition"), reward=dict(reward_end="wait")) obstacle_radius = traits.Float(2.0, desc='Radius of cylindrical obstacle') obstacle_penalty = traits.Float( 0.0, desc='Penalty time if the chain hits the obstacle(s)') def __init__(self, *args, **kwargs): super(TentacleMultiConfigObstacleAvoidance, self).__init__(*args, **kwargs) ## Create an obstacle object, hidden by default self.obstacle = Sphere(radius=self.obstacle_radius + 0.6, color=(0, 0, 1, .5)) self.obstacle_on = False self.obstacle_pos = np.ones(3) * np.nan self.hit_obstacle = False self.add_model(self.obstacle) def init(self): self.add_dtype('obstacle_on', 'f8', (1, )) self.add_dtype('obstacle_pos', 'f8', (3, )) super(TentacleMultiConfigObstacleAvoidance, self).init() def _cycle(self): self.task_data['obstacle_on'] = self.obstacle_on self.task_data['obstacle_pos'] = self.obstacle_pos super(TentacleMultiConfigObstacleAvoidance, self)._cycle() def _start_target(self): super(TentacleMultiConfigObstacleAvoidance, self)._start_target() if self.target_index == 1: self.obstacle_pos = (self.targs[0] / 2) self.obstacle.translate(*self.obstacle_pos, reset=True) self.obstacle.attach() self.obstacle_on = True def _test_obstacle_penalty_end(self, ts): return ts > self.obstacle_penalty def _start_obstacle_penalty(self): #hide targets for target in self.targets: target.hide() self.tries += 1 self.target_index = -1 def _end_target(self): self.obstacle.detach() self.obstacle_on = False def _test_hit_obstacle(self, ts): if self.target_index == 1: joint_angles = self.plant.get_intrinsic_coordinates() distances_to_links = self.plant.kin_chain.detect_collision( joint_angles, self.obstacle_pos) hit = np.min(distances_to_links) < (self.obstacle_radius + self.plant.link_radii[0]) if hit: self.hit_obstacle = True return True else: return False @staticmethod def tentacle_multi_start_config(nblocks=100, ntargets=4, distance=8, startangle=45): elbow_angles = np.array([ 135, 180, 225 ]) * np.pi / 180 # TODO make this a function argument! startangle = 45 * np.pi / 180 n_configs_per_target = len(elbow_angles) target_angles = np.arange(startangle, startangle + (2 * np.pi), 2 * np.pi / ntargets) targets = distance * np.vstack( [np.cos(target_angles), 0 * target_angles, np.sin(target_angles)]) seq = [] from itertools import izip import random for i in range(nblocks): target_inds = np.tile(np.arange(ntargets), (n_configs_per_target, 1)).T.ravel() config_inds = np.tile(np.arange(n_configs_per_target), ntargets) sub_seq = [] inds = np.arange(n_configs_per_target * ntargets) random.shuffle(inds) for k in inds: targ_ind = target_inds[k] config_ind = config_inds[k] seq_item = (np.vstack([targets[:, targ_ind], np.zeros(3)]), elbow_angles[config_ind]) seq.append(seq_item) return seq
class ManualControl2(ManualControl): status = dict(wait=dict(start_trial="origin", stop=None), origin=dict(enter_target="origin_hold", stop=None), origin_hold=dict(leave_early="hold_penalty", hold="terminus"), terminus=dict(timeout="timeout_penalty", enter_target="terminus_hold", stop=None), timeout_penalty=dict(penalty_end="pre_target_change"), terminus_hold=dict(leave_early="hold_penalty", hold="terminus2"), terminus2=dict(timeout="timeout_penalty", enter_target="terminus2_hold", stop=None), terminus2_hold=dict(leave_early="hold_penalty", hold="reward"), reward=dict(reward_end="target_change"), hold_penalty=dict(penalty_end="pre_target_change"), pre_target_change=dict(tried_enough='target_change', not_tried_enough='wait'), target_change=dict(target_change_end='wait')) scale_factor = 2 cursor_radius = .4 def __init__(self, *args, **kwargs): # Add the 2nd terminus target super(ManualControl2, self).__init__(*args, **kwargs) self.terminus2_target = Sphere(radius=self.terminus_size, color=(1, 0, 0, .5)) self.add_model(self.terminus2_target) def _start_wait(self): #set target colors self.terminus2_target.color = (1, 0, 0, .5) #hide targets from previous trial self.terminus2_target.detach() super(ManualControl2, self)._start_wait() def _test_enter_target(self, ts): #get the current cursor location and target location, return true if center of cursor is inside target (has to be close enough to center to be fully inside) if self.state == "terminus2": c = self.cursor.xfm.move t = self.terminus2_target.xfm.move d = np.sqrt((c[0] - t[0])**2 + (c[1] - t[1])**2 + (c[2] - t[2])**2) return d <= self.terminus_target.radius - self.cursor.radius else: return super(ManualControl2, self)._test_enter_target(ts) def _start_origin(self): if self.tries == 0: #retrieve location of next terminus target t2 = self.next_trial.T[2] #move target to correct location self.terminus2_target.translate(*t2, reset=True) super(ManualControl2, self)._start_origin() def _start_terminus_hold(self): self.terminus2_target.color = (1, 0, 0, 0.5) self.terminus2_target.attach() self.requeue() def _start_timeout_penalty(self): #hide targets and fixation point self.terminus2_target.detach() super(ManualControl2, self)._start_timeout_penalty() def _start_terminus2(self): self.terminus_target.detach() self.requeue() def _test_leave_early(self, ts): if self.state == "terminus2_hold": c = self.cursor.xfm.move t = self.terminus2_target.xfm.move d = np.sqrt((c[0] - t[0])**2 + (c[1] - t[1])**2 + (c[2] - t[2])**2) rad = self.terminus_target.radius - self.cursor.radius return d > rad * self.exit_radius else: return super(ManualControl2, self)._test_leave_early(ts) def _while_terminus2(self): self.update_cursor() def _while_terminus2_hold(self): self.update_cursor() def _end_terminus2_hold(self): self.terminus2_target.color = (0, 1, 0, 0.5) def _start_hold_penalty(self): self.terminus2_target.detach() super(ManualControl2, self)._start_hold_penalty() def _start_timeout_penalty(self): self.terminus2_target.detach() super(ManualControl2, self)._start_timeout_penalty() def update_target_location(self): # Determine the task target for assist/decoder adaptation purposes (convert # units from cm to mm for decoder) # TODO - decide what to do with y location, target_xz ignores it! if self.state == 'terminus2' or self.state == 'terminus2_hold': self.location = 10 * self.terminus2_target.xfm.move self.target_xz = np.array([self.location[0], self.location[2]]) super(ManualControl2, self).update_target_location()
def __init__(self, *args, **kwargs): # Add the 2nd terminus target super(ManualControl2, self).__init__(*args, **kwargs) self.terminus2_target = Sphere(radius=self.terminus_size, color=(1, 0, 0, .5)) self.add_model(self.terminus2_target)
def __init__(self, **kwargs): super(MovementTraining, self).__init__(**kwargs) self.cursor = Sphere(radius=.5, color=(.5, 0, .5, 1)) self.add_model(self.cursor)
class ManualControl(TargetCapture): status = dict(wait=dict(start_trial="origin", stop=None), origin=dict(enter_target="origin_hold", stop=None), origin_hold=dict(leave_early="hold_penalty", hold="terminus"), terminus=dict(timeout="timeout_penalty", enter_target="terminus_hold", stop=None), timeout_penalty=dict(penalty_end="pre_target_change"), terminus_hold=dict(leave_early="hold_penalty", hold="reward"), reward=dict(reward_end="target_change"), hold_penalty=dict(penalty_end="pre_target_change"), pre_target_change=dict(tried_enough='target_change', not_tried_enough='wait'), target_change=dict(target_change_end='wait')) #create settable traits terminus_size = traits.Float(1, desc="Radius of terminus targets") terminus_hold_time = traits.Float( 2, desc="Length of hold required at terminus") timeout_time = traits.Float( 10, desc="Time allowed to go between origin and terminus") timeout_penalty_time = traits.Float( 3, desc="Length of penalty time for timeout error") #create fixation point, targets, cursor objects, initialize def __init__(self, *args, **kwargs): # Add the target and cursor locations to the task data to be saved to # file self.dtype = [('target', 'f', (3, )), ('cursor', 'f', (3, ))] super(ManualControl, self).__init__(*args, **kwargs) self.terminus_target = Sphere(radius=self.terminus_size, color=(1, 0, 0, .5)) self.add_model(self.terminus_target) # Initialize target location variables self.location = np.array([0, 0, 0]) self.target_xz = np.array([0, 0]) def _start_wait(self): super(ManualControl, self)._start_wait() #set target colors self.terminus_target.color = (1, 0, 0, .5) #hide targets from previous trial self.show_terminus(False) def _start_origin(self): if self.tries == 0: #retrieve location of next terminus target t = self.next_trial.T[1] #move target to correct location self.terminus_target.translate(*t, reset=True) super(ManualControl, self)._start_origin() def _start_origin_hold(self): #make terminus target visible self.show_terminus(True) def show_terminus(self, show=False): if show: self.terminus_target.attach() else: self.terminus_target.detach() self.requeue() def _start_terminus(self): self.show_origin(False) def _end_terminus_hold(self): self.terminus_target.color = (0, 1, 0, 0.5) def _start_hold_penalty(self): #hide targets super(ManualControl, self)._start_hold_penalty() self.show_terminus(False) def _start_timeout_penalty(self): #hide targets and fixation point self.tries += 1 self.show_terminus(False) def _start_reward(self): pass def _test_enter_target(self, ts): #get the current cursor location and target location, return true if center of cursor is inside target (has to be close enough to center to be fully inside) if self.state == "origin": c = self.cursor.xfm.move t = self.origin_target.xfm.move d = np.sqrt((c[0] - t[0])**2 + (c[1] - t[1])**2 + (c[2] - t[2])**2) return d <= self.origin_target.radius - self.cursor.radius if self.state == "terminus": c = self.cursor.xfm.move t = self.terminus_target.xfm.move d = np.sqrt((c[0] - t[0])**2 + (c[1] - t[1])**2 + (c[2] - t[2])**2) return d <= self.terminus_target.radius - self.cursor.radius def _test_leave_early(self, ts): if self.state == "origin_hold": c = self.cursor.xfm.move t = self.origin_target.xfm.move d = np.sqrt((c[0] - t[0])**2 + (c[1] - t[1])**2 + (c[2] - t[2])**2) rad = self.origin_target.radius - self.cursor.radius return d > rad * self.exit_radius if self.state == "terminus_hold": c = self.cursor.xfm.move t = self.terminus_target.xfm.move d = np.sqrt((c[0] - t[0])**2 + (c[1] - t[1])**2 + (c[2] - t[2])**2) rad = self.terminus_target.radius - self.cursor.radius return d > rad * self.exit_radius def _test_hold(self, ts): if self.state == "origin_hold": return ts >= self.origin_hold_time else: return ts >= self.terminus_hold_time def _test_timeout(self, ts): return ts > self.timeout_time def _test_penalty_end(self, ts): if self.state == "timeout_penalty": return ts > self.timeout_penalty_time if self.state == "fixation_penalty": return ts > self.fixation_penalty_time else: return ts > self.hold_penalty_time def _while_terminus(self): self.update_cursor() def _while_terminus_hold(self): self.update_cursor() def _while_timeout_penalty(self): self.update_cursor() def update_target_location(self): # Determine the task target for assist/decoder adaptation purposes (convert # units from cm to mm for decoder) # TODO - decide what to do with y location, target_xz ignores it! if self.state == 'origin' or self.state == 'origin_hold': self.location = 10 * self.origin_target.xfm.move self.target_xz = np.array([self.location[0], self.location[2]]) elif self.state == 'terminus' or self.state == 'terminus_hold': self.location = 10 * self.terminus_target.xfm.move self.target_xz = np.array([self.location[0], self.location[2]]) self.task_data['target'] = self.location[:3] def update_cursor(self): self.update_target_location() super(ManualControl, self).update_cursor() self.task_data['cursor'] = self.cursor.xfm.move.copy()
from riglib.stereo_opengl.primitives import Cylinder, Plane, Sphere, Cone from riglib.stereo_opengl.models import FlatMesh, Group from riglib.stereo_opengl.textures import Texture, TexModel from riglib.stereo_opengl.render import ssao, stereo, Renderer from riglib.stereo_opengl.utils import cloudy_tex from riglib.stereo_opengl.ik import RobotArmGen2D from riglib.stereo_opengl.xfm import Quaternion import time from riglib.stereo_opengl.ik import RobotArm import pygame arm4j = RobotArmGen2D(link_radii=.2, joint_radii=.2, link_lengths=[4, 4, 2, 2]) cone = Sphere(radius=1) pos_list = np.array([[0, 0, 0], [0, 0, 5]]) class Test2(Window): def __init__(self, *args, **kwargs): self.count = 0 super(Test2, self).__init__(*args, **kwargs) def _start_draw(self): #arm4j.set_joint_pos([0,0,np.pi/2,np.pi/2]) #arm4j.get_endpoint_pos() pass def _while_draw(self):
def __init__(self, body_weight=6.5, base_loc=np.array([2., 0., -15])): ''' body_weight : float Entire weight of subject in kg. Used to determine the mass of the arm segements using regression model from Cheng & Scott 2000, p221, Table 8 ''' # Initialize the dynamics world # world = ode.World() # TODO this should be part of the window, for object collision detection stuff # world.setGravity((0,0,0)) # Arm link lengths----from monkey P? Numbers taken from MATLAB code originally written by Rodolphe Heliot/Amy Orsborn # Changed to these values because most common among old code. Cheng & Scott 2000 Table 2 has other values if change needed self.l_ua = 17.70 # cm self.l_fa = 20.35 # cm # Friction coefficients self.B = np.mat([[0.03, 0.01], [0.01, 0.03]]) # Mass of upperarm/forearm from Cheng & Scott, 2000, p221, Table 8 (based on morphometric data) self.m_ua = 0.001*(23 + 34.4*body_weight) self.m_fa = 0.001*(53 + 25.2*body_weight) ## Determine the inertia of each segment rad_of_gyration = np.array([0.247, 0.248]) # relative to the length of each segment # Calculate center of mass for each segment self.ctr_of_mass_ua = self.l_ua * rad_of_gyration[0] self.ctr_of_mass_fa = self.l_fa * rad_of_gyration[1] self.r_ua = self.ctr_of_mass_ua self.r_fa = self.ctr_of_mass_fa # Calculate moment of inertia for each segment # i = 0.001 * 0.0001 * (b + m*total_body_weight), where 'b' and 'm' are from Cheng & Scott 2000, p221, Table 8 # 0.001 * 0.0001 converts (g cm^2) ==> (kg m^2) self.I_ua = 0.001*0.0001*(432 + 356.6*body_weight) self.I_fa = 0.001*0.0001*(2381 + 861.6*body_weight) self.rad_ua = np.sqrt(4*(self.I_ua/self.m_ua - 1./3*(0.01*self.l_ua)**2)) self.rad_fa = np.sqrt(4*(self.I_fa/self.m_fa - 1./3*(0.01*self.l_fa)**2)) # Create two bodies # upper_arm = ode.Body(world) # M = ode.Mass() # M.setCylinderTotal(total_mass=100*self.m_ua, direction=1, r=3, h=self.l_ua) # upper_arm.setMass(M) # upper_arm.setPosition(base_loc + np.array([self.l_ua, 0, 0])) # forearm = ode.Body(world) # M = ode.Mass() # M.setCylinderTotal(total_mass=100*self.m_fa, direction=1, r=3, h=self.l_fa) # forearm.setMass(M) # forearm.setPosition(base_loc + np.array([self.l_ua + self.l_fa, 0, 0])) # # anchor upper_arm to the world at position (2., 0, -15) # j1 = ode.HingeJoint(world) # j1.attach(upper_arm, ode.environment) # j1.setAnchor(base_loc) # j1.setAxis((0, 1, 0)) # # anchor forearm to the distal end of upper_arm # j2 = ode.HingeJoint(world) # j2.attach(upper_arm, forearm) # j2.setAnchor(base_loc + np.array([self.l_ua, 0, 0])) # j2.setAxis((0, 1, 0)) # self.arm_segments = [upper_arm, forearm] # self.joints = [j1, j2] # self.world = world # self.num_joints = len(self.joints) self.theta = np.array([ 0.38118002, 2.08145271])# angular self.omega = np.zeros(2) # angular vel self.alpha = np.zeros(2) # angular acc self.torque = np.zeros(2) self.base_loc = base_loc link_radii=arm_radius joint_radii=arm_radius joint_colors=arm_color link_colors=arm_color self.link_lengths = link_lengths = [self.l_ua, self.l_fa] self.num_joints = len(self.link_lengths) self.curr_vecs = np.zeros([self.num_joints, 3]) #rows go from proximal to distal links self.chain = Chain(link_radii, joint_radii, link_lengths, joint_colors, link_colors) self.cursor = Sphere(radius=arm_radius/2, color=link_colors) self.graphics_models = [self.chain.link_groups[0], self.cursor] self.chain.translate(*self.base_loc, reset=True) self.kin_chain = robot_arms.PlanarXZKinematicChain2Link(link_lengths, base_loc=base_loc) self.stay_on_screen = False self.visible = True
class ApproachAvoidanceTask(Sequence, Window): ''' This is for a free-choice task with two targets (left and right) presented to choose from. The position of the targets may change along the x-axis, according to the target generator, and each target has a varying probability of reward, also according to the target generator. The code as it is written is for a joystick. Notes: want target_index to only write once per trial. if so, can make instructed trials random. else, make new state for instructed trial. ''' background = (0,0,0,1) shoulder_anchor = np.array([2., 0., -15.]) # Coordinates of shoulder anchor point on screen arm_visible = traits.Bool(True, desc='Specifies whether entire arm is displayed or just endpoint') cursor_radius = traits.Float(.5, desc="Radius of cursor") cursor_color = (.5,0,.5,1) joystick_method = traits.Float(1,desc="1: Normal velocity, 0: Position control") joystick_speed = traits.Float(20, desc="Speed of cursor") plant_type_options = plantlist.keys() plant_type = traits.OptionsList(*plantlist, bmi3d_input_options=plantlist.keys()) starting_pos = (5, 0, 5) # window_size = (1280*2, 1024) window_size = traits.Tuple((1366*2, 768), desc='window size') status = dict( #wait = dict(start_trial="target", stop=None), wait = dict(start_trial="center", stop=None), center = dict(enter_center="hold_center", timeout="timeout_penalty", stop=None), hold_center = dict(leave_early_center = "hold_penalty",hold_center_complete="target", timeout="timeout_penalty", stop=None), target = dict(enter_targetL="hold_targetL", enter_targetH = "hold_targetH", timeout="timeout_penalty", stop=None), hold_targetR = dict(leave_early_R="hold_penalty", hold_complete="targ_transition"), hold_targetL = dict(leave_early_L="hold_penalty", hold_complete="targ_transition"), targ_transition = dict(trial_complete="check_reward",trial_abort="wait", trial_incomplete="center"), check_reward = dict(avoid="reward",approach="reward_and_airpuff"), timeout_penalty = dict(timeout_penalty_end="targ_transition"), hold_penalty = dict(hold_penalty_end="targ_transition"), reward = dict(reward_end="wait"), reward_and_airpuff = dict(reward_and_airpuff_end="wait"), ) # target_color = (.5,1,.5,0) #initial state state = "wait" #create settable traits reward_time_avoid = traits.Float(.2, desc="Length of juice reward for avoid decision") reward_time_approach_min = traits.Float(.2, desc="Min length of juice for approach decision") reward_time_approach_max = traits.Float(.8, desc="Max length of juice for approach decision") target_radius = traits.Float(1.5, desc="Radius of targets in cm") block_length = traits.Float(100, desc="Number of trials per block") hold_time = traits.Float(.5, desc="Length of hold required at targets") hold_penalty_time = traits.Float(1, desc="Length of penalty time for target hold error") timeout_time = traits.Float(10, desc="Time allowed to go between targets") timeout_penalty_time = traits.Float(1, desc="Length of penalty time for timeout error") max_attempts = traits.Int(10, desc='The number of attempts at a target before\ skipping to the next one') session_length = traits.Float(0, desc="Time until task automatically stops. Length of 0 means no auto stop.") marker_num = traits.Int(14, desc="The index of the motiontracker marker to use for cursor position") arm_hide_rate = traits.Float(0.0, desc='If the arm is visible, specifies a percentage of trials where it will be hidden') target_index = 0 # Helper variable to keep track of whether trial is instructed (1 = 1 choice) or free-choice (2 = 2 choices) target_selected = 'L' # Helper variable to indicate which target was selected tries = 0 # Helper variable to keep track of the number of failed attempts at a given trial. timedout = False # Helper variable to keep track if transitioning from timeout_penalty reward_counter = 0.0 cursor_visible = False # Determines when to hide the cursor. no_data_count = 0 # Counter for number of missing data frames in a row scale_factor = 3.0 #scale factor for converting hand movement to screen movement (1cm hand movement = 3.5cm cursor movement) starting_dist = 10.0 # starting distance from center target #color_targets = np.random.randint(2) color_targets = 1 # 0: yellow low, blue high; 1: blue low, yellow high stopped_center_hold = False #keep track if center hold was released early limit2d = 1 color1 = target_colors['purple'] # approach color color2 = target_colors['lightsteelblue'] # avoid color reward_color = target_colors['green'] # color of reward bar airpuff_color = target_colors['red'] # color of airpuff bar sequence_generators = ['colored_targets_with_probabilistic_reward','block_probabilistic_reward','colored_targets_with_randomwalk_reward','randomwalk_probabilistic_reward'] def __init__(self, *args, **kwargs): super(ApproachAvoidanceTask, self).__init__(*args, **kwargs) self.cursor_visible = True # Add graphics models for the plant and targets to the window self.plant = plantlist[self.plant_type] self.plant_vis_prev = True # Add graphics models for the plant and targets to the window if hasattr(self.plant, 'graphics_models'): for model in self.plant.graphics_models: self.add_model(model) self.current_pt=np.zeros([3]) #keep track of current pt self.last_pt=np.zeros([3]) #kee ## Declare cursor #self.dtype.append(('cursor', 'f8', (3,))) if 0: #hasattr(self.arm, 'endpt_cursor'): self.cursor = self.arm.endpt_cursor else: self.cursor = Sphere(radius=self.cursor_radius, color=self.cursor_color) self.add_model(self.cursor) self.cursor.translate(*self.get_arm_endpoint(), reset=True) ## Instantiate the targets. Target 1 is center target, Target H is target with high probability of reward, Target L is target with low probability of reward. self.target1 = Sphere(radius=self.target_radius, color=self.target_color) # center target self.add_model(self.target1) self.targetR = Sphere(radius=self.target_radius, color=self.target_color) # left target self.add_model(self.targetH) self.targetL = Sphere(radius=self.target_radius, color=self.target_color) # right target self.add_model(self.targetL) ###STOPPED HERE: should define Rect target here and then adapt length during task. Also, ### be sure to change all targetH instantiations to targetR. # Initialize target location variable. self.target_location1 = np.array([0,0,0]) self.target_locationR = np.array([-self.starting_dist,0,0]) self.target_locationL = np.array([self.starting_dist,0,0]) self.target1.translate(*self.target_location1, reset=True) self.targetH.translate(*self.target_locationR, reset=True) self.targetL.translate(*self.target_locationL, reset=True) # Initialize colors for high probability and low probability target. Color will not change. self.targetH.color = self.color_targets*self.color1 + (1 - self.color_targets)*self.color2 # high is magenta if color_targets = 1, juicyorange otherwise self.targetL.color = (1 - self.color_targets)*self.color1 + self.color_targets*self.color2 #set target colors self.target1.color = (1,0,0,.5) # center target red # Initialize target location variable self.target_location = np.array([0, 0, 0]) # Declare any plant attributes which must be saved to the HDF file at the _cycle rate for attr in self.plant.hdf_attrs: self.add_dtype(*attr) def init(self): self.add_dtype('targetR', 'f8', (3,)) self.add_dtype('targetL','f8', (3,)) self.add_dtype('reward_scheduleR','f8', (1,)) self.add_dtype('reward_scheduleL','f8', (1,)) self.add_dtype('target_index', 'i', (1,)) super(ApproachAvoidanceTask, self).init() self.trial_allocation = np.zeros(1000) def _cycle(self): ''' Calls any update functions necessary and redraws screen. Runs 60x per second. ''' ## Run graphics commands to show/hide the arm if the visibility has changed if self.plant_type != 'cursor_14x14': if self.arm_visible != self.arm_vis_prev: self.arm_vis_prev = self.arm_visible self.show_object(self.arm, show=self.arm_visible) self.move_arm() #self.move_plant() ## Save plant status to HDF file plant_data = self.plant.get_data_to_save() for key in plant_data: self.task_data[key] = plant_data[key] self.update_cursor() if self.plant_type != 'cursor_14x14': self.task_data['joint_angles'] = self.get_arm_joints() super(ApproachAvoidanceTask, self)._cycle() ## Plant functions def get_cursor_location(self): # arm returns it's position as if it was anchored at the origin, so have to translate it to the correct place return self.get_arm_endpoint() def get_arm_endpoint(self): return self.plant.get_endpoint_pos() def set_arm_endpoint(self, pt, **kwargs): self.plant.set_endpoint_pos(pt, **kwargs) def set_arm_joints(self, angles): self.arm.set_intrinsic_coordinates(angles) def get_arm_joints(self): return self.arm.get_intrinsic_coordinates() def update_cursor(self): ''' Update the cursor's location and visibility status. ''' pt = self.get_cursor_location() self.update_cursor_visibility() if pt is not None: self.move_cursor(pt) def move_cursor(self, pt): ''' Move the cursor object to the specified 3D location. ''' # if not hasattr(self.arm, 'endpt_cursor'): self.cursor.translate(*pt[:3],reset=True) ## ##### HELPER AND UPDATE FUNCTIONS #### def move_arm(self): ''' Returns the 3D coordinates of the cursor. For manual control, uses joystick data. If no joystick data available, returns None''' pt = self.joystick.get() if len(pt) > 0: pt = pt[-1][0] pt[0]=1-pt[0]; #Switch L / R axes calib = [0.497,0.517] #Sometimes zero point is subject to drift this is the value of the incoming joystick when at 'rest' if self.joystick_method==0: pos = np.array([(pt[0]-calib[0]), 0, calib[1]-pt[1]]) pos[0] = pos[0]*36 pos[2] = pos[2]*24 self.current_pt = pos elif self.joystick_method==1: vel=np.array([(pt[0]-calib[0]), 0, calib[1]-pt[1]]) epsilon = 2*(10**-2) #Define epsilon to stabilize cursor movement if sum((vel)**2) > epsilon: self.current_pt=self.last_pt+self.joystick_speed*vel*(1/60) #60 Hz update rate, dt = 1/60 else: self.current_pt = self.last_pt if self.current_pt[0] < -25: self.current_pt[0] = -25 if self.current_pt[0] > 25: self.current_pt[0] = 25 if self.current_pt[-1] < -14: self.current_pt[-1] = -14 if self.current_pt[-1] > 14: self.current_pt[-1] = 14 self.set_arm_endpoint(self.current_pt) self.last_pt = self.current_pt.copy() def convert_to_cm(self, val): return val/10.0 def update_cursor_visibility(self): ''' Update cursor visible flag to hide cursor if there has been no good data for more than 3 frames in a row''' prev = self.cursor_visible if self.no_data_count < 3: self.cursor_visible = True if prev != self.cursor_visible: self.show_object(self.cursor, show=True) self.requeue() else: self.cursor_visible = False if prev != self.cursor_visible: self.show_object(self.cursor, show=False) self.requeue() def calc_n_successfultrials(self): trialendtimes = np.array([state[1] for state in self.state_log if state[0]=='check_reward']) return len(trialendtimes) def calc_n_rewards(self): rewardtimes = np.array([state[1] for state in self.state_log if state[0]=='reward']) return len(rewardtimes) def calc_trial_num(self): '''Calculates the current trial count: completed + aborted trials''' trialtimes = [state[1] for state in self.state_log if state[0] in ['wait']] return len(trialtimes)-1 def calc_targetH_num(self): '''Calculates the total number of times the high-value target was selected''' trialtimes = [state[1] for state in self.state_log if state[0] in ['hold_targetH']] return len(trialtimes) - 1 def calc_rewards_per_min(self, window): '''Calculates the Rewards/min for the most recent window of specified number of seconds in the past''' rewardtimes = np.array([state[1] for state in self.state_log if state[0]=='reward']) if (self.get_time() - self.task_start_time) < window: divideby = (self.get_time() - self.task_start_time)/sec_per_min else: divideby = window/sec_per_min return np.sum(rewardtimes >= (self.get_time() - window))/divideby def calc_success_rate(self, window): '''Calculates the rewarded trials/initiated trials for the most recent window of specified length in sec''' trialtimes = np.array([state[1] for state in self.state_log if state[0] in ['reward', 'timeout_penalty', 'hold_penalty']]) rewardtimes = np.array([state[1] for state in self.state_log if state[0]=='reward']) if len(trialtimes) == 0: return 0.0 else: return float(np.sum(rewardtimes >= (self.get_time() - window)))/np.sum(trialtimes >= (self.get_time() - window)) def update_report_stats(self): '''Function to update any relevant report stats for the task. Values are saved in self.reportstats, an ordered dictionary. Keys are strings that will be displayed as the label for the stat in the web interface, values can be numbers or strings. Called every time task state changes.''' super(ApproachAvoidanceTask, self).update_report_stats() self.reportstats['Trial #'] = self.calc_trial_num() self.reportstats['Reward/min'] = np.round(self.calc_rewards_per_min(120),decimals=2) self.reportstats['High-value target selections'] = self.calc_targetH_num() #self.reportstats['Success rate'] = str(np.round(self.calc_success_rate(120)*100.0,decimals=2)) + '%' start_time = self.state_log[0][1] rewardtimes=np.array([state[1] for state in self.state_log if state[0]=='reward']) if len(rewardtimes): rt = rewardtimes[-1]-start_time else: rt= np.float64("0.0") sec = str(np.int(np.mod(rt,60))) if len(sec) < 2: sec = '0'+sec self.reportstats['Time Of Last Reward'] = str(np.int(np.floor(rt/60))) + ':' + sec #### TEST FUNCTIONS #### def _test_enter_center(self, ts): #return true if the distance between center of cursor and target is smaller than the cursor radius d = np.sqrt((self.cursor.xfm.move[0]-self.target_location1[0])**2 + (self.cursor.xfm.move[1]-self.target_location1[1])**2 + (self.cursor.xfm.move[2]-self.target_location1[2])**2) #print 'TARGET SELECTED', self.target_selected return d <= self.target_radius - self.cursor_radius def _test_enter_targetL(self, ts): if self.target_index == 1 and self.LH_target_on[0]==0: #return false if instructed trial and this target is not on return False else: #return true if the distance between center of cursor and target is smaller than the cursor radius d = np.sqrt((self.cursor.xfm.move[0]-self.target_locationL[0])**2 + (self.cursor.xfm.move[1]-self.target_locationL[1])**2 + (self.cursor.xfm.move[2]-self.target_locationL[2])**2) self.target_selected = 'L' #print 'TARGET SELECTED', self.target_selected return d <= self.target_radius - self.cursor_radius def _test_enter_targetH(self, ts): if self.target_index ==1 and self.LH_target_on[1]==0: return False else: #return true if the distance between center of cursor and target is smaller than the cursor radius d = np.sqrt((self.cursor.xfm.move[0]-self.target_locationH[0])**2 + (self.cursor.xfm.move[1]-self.target_locationH[1])**2 + (self.cursor.xfm.move[2]-self.target_locationH[2])**2) self.target_selected = 'H' #print 'TARGET SELECTED', self.target_selected return d <= self.target_radius - self.cursor_radius def _test_leave_early_center(self, ts): # return true if cursor moves outside the exit radius (gives a bit of slack around the edge of target once cursor is inside) d = np.sqrt((self.cursor.xfm.move[0]-self.target_location1[0])**2 + (self.cursor.xfm.move[1]-self.target_location1[1])**2 + (self.cursor.xfm.move[2]-self.target_location1[2])**2) rad = self.target_radius - self.cursor_radius return d > rad def _test_leave_early_L(self, ts): # return true if cursor moves outside the exit radius (gives a bit of slack around the edge of target once cursor is inside) d = np.sqrt((self.cursor.xfm.move[0]-self.target_locationL[0])**2 + (self.cursor.xfm.move[1]-self.target_locationL[1])**2 + (self.cursor.xfm.move[2]-self.target_locationL[2])**2) rad = self.target_radius - self.cursor_radius return d > rad def _test_leave_early_H(self, ts): # return true if cursor moves outside the exit radius (gives a bit of slack around the edge of target once cursor is inside) d = np.sqrt((self.cursor.xfm.move[0]-self.target_locationH[0])**2 + (self.cursor.xfm.move[1]-self.target_locationH[1])**2 + (self.cursor.xfm.move[2]-self.target_locationH[2])**2) rad = self.target_radius - self.cursor_radius return d > rad def _test_hold_center_complete(self, ts): return ts>=self.hold_time def _test_hold_complete(self, ts): return ts>=self.hold_time def _test_timeout(self, ts): return ts>self.timeout_time def _test_timeout_penalty_end(self, ts): return ts>self.timeout_penalty_time def _test_hold_penalty_end(self, ts): return ts>self.hold_penalty_time def _test_trial_complete(self, ts): #return self.target_index==self.chain_length-1 return not self.timedout def _test_trial_incomplete(self, ts): return (not self._test_trial_complete(ts)) and (self.tries<self.max_attempts) def _test_trial_abort(self, ts): return (not self._test_trial_complete(ts)) and (self.tries==self.max_attempts) def _test_yes_reward(self,ts): if self.target_selected == 'H': #reward_assigned = self.targs[0,1] reward_assigned = self.rewardH else: #reward_assigned = self.targs[1,1] reward_assigned = self.rewardL if self.reward_SmallLarge==1: self.reward_time = reward_assigned*self.reward_time_large + (1 - reward_assigned)*self.reward_time_small # update reward time if using Small/large schedule reward_assigned = 1 # always rewarded return bool(reward_assigned) def _test_no_reward(self,ts): if self.target_selected == 'H': #reward_assigned = self.targs[0,1] reward_assigned = self.rewardH else: #reward_assigned = self.targs[1,1] reward_assigned = self.rewardL if self.reward_SmallLarge==True: self.reward_time = reward_assigned*self.reward_time_large + (1 - reward_assigned)*self.reward_time_small # update reward time if using Small/large schedule reward_assigned = 1 # always rewarded return bool(not reward_assigned) def _test_reward_end(self, ts): time_ended = (ts > self.reward_time) self.reward_counter = self.reward_counter + 1 return time_ended def _test_stop(self, ts): if self.session_length > 0 and (time.time() - self.task_start_time) > self.session_length: self.end_task() return self.stop #### STATE FUNCTIONS #### def show_object(self, obj, show=False): ''' Show or hide an object ''' if show: obj.attach() else: obj.detach() self.requeue() def _start_wait(self): super(ApproachAvoidanceTask, self)._start_wait() self.tries = 0 self.target_index = 0 # indicator for instructed or free-choice trial #hide targets self.show_object(self.target1, False) self.show_object(self.targetL, False) self.show_object(self.targetH, False) #get target positions and reward assignments for this trial self.targs = self.next_trial if self.plant_type != 'cursor_14x14' and np.random.rand() < self.arm_hide_rate: self.arm_visible = False else: self.arm_visible = True #self.chain_length = self.targs.shape[0] #Number of sequential targets in a single trial #self.task_data['target'] = self.target_locationH.copy() assign_reward = np.random.randint(0,100,size=2) self.rewardH = np.greater(self.targs[0,1],assign_reward[0]) #print 'high value target reward prob', self.targs[0,1] self.rewardL = np.greater(self.targs[1,1],assign_reward[1]) #print 'TARGET GENERATOR', self.targs[0,] self.task_data['targetH'] = self.targs[0,].copy() self.task_data['reward_scheduleH'] = self.rewardH.copy() self.task_data['targetL'] = self.targs[1,].copy() self.task_data['reward_scheduleL'] = self.rewardL.copy() self.requeue() def _start_center(self): #self.target_index += 1 self.show_object(self.target1, True) self.show_object(self.cursor, True) # Third argument in self.targs determines if target is on left or right # First argument in self.targs determines if location is offset to farther distances offsetH = (2*self.targs[0,2] - 1)*(self.starting_dist + self.location_offset_allowed*self.targs[0,0]*4.0) moveH = np.array([offsetH,0,0]) offsetL = (2*self.targs[1,2] - 1)*(self.starting_dist + self.location_offset_allowed*self.targs[1,0]*4.0) moveL = np.array([offsetL,0,0]) self.targetL.translate(*moveL, reset=True) #self.targetL.move_to_position(*moveL, reset=True) ##self.targetL.translate(*self.targs[self.target_index], reset=True) self.show_object(self.targetL, True) self.target_locationL = self.targetL.xfm.move self.targetH.translate(*moveH, reset=True) #self.targetR.move_to_position(*moveR, reset=True) ##self.targetR.translate(*self.targs[self.target_index], reset=True) self.show_object(self.targetH, True) self.target_locationH = self.targetH.xfm.move # Insert instructed trials within free choice trials if self.trial_allocation[self.calc_trial_num()] == 1: #if (self.calc_trial_num() % 10) < (self.percentage_instructed_trials/10): self.target_index = 1 # instructed trial leftright_coinflip = np.random.randint(0,2) if leftright_coinflip == 0: self.show_object(self.targetL, False) self.LH_target_on = (0, 1) else: self.show_object(self.targetH, False) self.LR_coinflip = 0 self.LH_target_on = (1, 0) else: self.target_index = 2 # free-choice trial self.cursor_visible = True self.task_data['target_index'] = self.target_index self.requeue() def _start_target(self): #self.target_index += 1 #move targets to current location and set location attribute. Target1 (center target) position does not change. self.show_object(self.target1, False) #self.target_location1 = self.target1.xfm.move self.show_object(self.cursor, True) self.update_cursor() self.requeue() def _start_hold_center(self): self.show_object(self.target1, True) self.timedout = False self.requeue() def _start_hold_targetL(self): #make next target visible unless this is the final target in the trial #if 1 < self.chain_length: #self.targetL.translate(*self.targs[self.target_index+1], reset=True) # self.show_object(self.targetL, True) # self.requeue() self.show_object(self.targetL, True) self.timedout = False self.requeue() def _start_hold_targetH(self): #make next target visible unless this is the final target in the trial #if 1 < self.chain_length: #self.targetR.translate(*self.targs[self.target_index+1], reset=True) # self.show_object(self.targetR, True) # self.requeue() self.show_object(self.targetH, True) self.timedout = False self.requeue() def _end_hold_center(self): self.target1.radius = 0.7*self.target_radius # color target green def _end_hold_targetL(self): self.targetL.color = (0,1,0,0.5) # color target green def _end_hold_targetH(self): self.targetH.color = (0,1,0,0.5) # color target green def _start_hold_penalty(self): #hide targets self.show_object(self.target1, False) self.show_object(self.targetL, False) self.show_object(self.targetH, False) self.timedout = True self.requeue() self.tries += 1 #self.target_index = -1 def _start_timeout_penalty(self): #hide targets self.show_object(self.target1, False) self.show_object(self.targetL, False) self.show_object(self.targetH, False) self.timedout = True self.requeue() self.tries += 1 #self.target_index = -1 def _start_targ_transition(self): #hide targets self.show_object(self.target1, False) self.show_object(self.targetL, False) self.show_object(self.targetH, False) self.requeue() def _start_check_reward(self): #hide targets self.show_object(self.target1, False) self.show_object(self.targetL, False) self.show_object(self.targetH, False) self.requeue() def _start_reward(self): #super(ApproachAvoidanceTask, self)._start_reward() if self.target_selected == 'L': self.show_object(self.targetL, True) #reward_assigned = self.targs[1,1] else: self.show_object(self.targetH, True) #reward_assigned = self.targs[0,1] #self.reward_counter = self.reward_counter + float(reward_assigned) self.requeue() @staticmethod def colored_targets_with_probabilistic_reward(length=1000, boundaries=(-18,18,-10,10,-15,15),reward_high_prob=80,reward_low_prob=40): """ Generator should return array of ntrials x 2 x 3. The second dimension is for each target. For example, first is the target with high probability of reward, and the second entry is for the target with low probability of reward. The third dimension holds three variables indicating position offset (yes/no), reward probability (fixed in this case), and location (binary returned where the ouput indicates either left or right). UPDATE: CHANGED SO THAT THE SECOND DIMENSION CARRIES THE REWARD PROBABILITY RATHER THAN THE REWARD SCHEDULE """ position_offsetH = np.random.randint(2,size=(1,length)) position_offsetL = np.random.randint(2,size=(1,length)) location_int = np.random.randint(2,size=(1,length)) # coin flips for reward schedules, want this to be elementwise comparison #assign_rewardH = np.random.randint(0,100,size=(1,length)) #assign_rewardL = np.random.randint(0,100,size=(1,length)) high_prob = reward_high_prob*np.ones((1,length)) low_prob = reward_low_prob*np.ones((1,length)) #reward_high = np.greater(high_prob,assign_rewardH) #reward_low = np.greater(low_prob,assign_rewardL) pairs = np.zeros([length,2,3]) pairs[:,0,0] = position_offsetH #pairs[:,0,1] = reward_high pairs[:,0,1] = high_prob pairs[:,0,2] = location_int pairs[:,1,0] = position_offsetL #pairs[:,1,1] = reward_low pairs[:,1,1] = low_prob pairs[:,1,2] = 1 - location_int return pairs @staticmethod def block_probabilistic_reward(length=1000, boundaries=(-18,18,-10,10,-15,15),reward_high_prob=80,reward_low_prob=40): pairs = colored_targets_with_probabilistic_reward(length=length, boundaries=boundaries,reward_high_prob=reward_high_prob,reward_low_prob=reward_low_prob) return pairs @staticmethod def colored_targets_with_randomwalk_reward(length=1000,reward_high_prob=80,reward_low_prob=40,reward_high_span = 20, reward_low_span = 20,step_size_mean = 0, step_size_var = 1): """ Generator should return array of ntrials x 2 x 3. The second dimension is for each target. For example, first is the target with high probability of reward, and the second entry is for the target with low probability of reward. The third dimension holds three variables indicating position offset (yes/no), reward probability, and location (binary returned where the ouput indicates either left or right). The variables reward_high_span and reward_low_span indicate the width of the range that the high or low reward probability are allowed to span respectively, e.g. if reward_high_prob is 80 and reward_high_span is 20, then the reward probability for the high value target will be bounded between 60 and 100 percent. """ position_offsetH = np.random.randint(2,size=(1,length)) position_offsetL = np.random.randint(2,size=(1,length)) location_int = np.random.randint(2,size=(1,length)) # define variables for increments: amount of increment and in which direction (i.e. increasing or decreasing) assign_rewardH = np.random.randn(1,length) assign_rewardL = np.random.randn(1,length) assign_rewardH_direction = np.random.randn(1,length) assign_rewardL_direction = np.random.randn(1,length) r_0_high = reward_high_prob r_0_low = reward_low_prob r_lowerbound_high = r_0_high - (reward_high_span/2) r_upperbound_high = r_0_high + (reward_high_span/2) r_lowerbound_low = r_0_low - (reward_low_span/2) r_upperbound_low = r_0_low + (reward_low_span/2) reward_high = np.zeros(length) reward_low = np.zeros(length) reward_high[0] = r_0_high reward_low[0] = r_0_low eps_high = assign_rewardH*step_size_mean + [2*(assign_rewardH_direction > 0) - 1]*step_size_var eps_low = assign_rewardL*step_size_mean + [2*(assign_rewardL_direction > 0) - 1]*step_size_var eps_high = eps_high.ravel() eps_low = eps_low.ravel() for i in range(1,length): ''' assign_rewardH_direction = np.random.randn(1) assign_rewardL_direction = np.random.randn(1) assign_rewardH = np.random.randn(1) if assign_rewardH_direction[i-1,] < 0: eps_high = step_size_mean*assign_rewardH[i-1] - step_size_var else: eps_high = step_size_mean*assign_rewardH[i-1] + step_size_var if assign_rewardL_direction[i] < 0: eps_low = step_size_mean*assign_rewardL[i] - step_size_var else: eps_low = step_size_mean*assign_rewardL[i] + step_size_var ''' reward_high[i] = reward_high[i-1] + eps_high[i-1] reward_low[i] = reward_low[i-1] + eps_low[i-1] reward_high[i] = (r_lowerbound_high < reward_high[i] < r_upperbound_high)*reward_high[i] + (r_lowerbound_high > reward_high[i])*(r_lowerbound_high+ eps_high[i-1]) + (r_upperbound_high < reward_high[i])*(r_upperbound_high - eps_high[i-1]) reward_low[i] = (r_lowerbound_low < reward_low[i] < r_upperbound_low)*reward_low[i] + (r_lowerbound_low > reward_low[i])*(r_lowerbound_low+ eps_low[i-1]) + (r_upperbound_low < reward_low[i])*(r_upperbound_low - eps_low[i-1]) pairs = np.zeros([length,2,3]) pairs[:,0,0] = position_offsetH pairs[:,0,1] = reward_high pairs[:,0,2] = location_int pairs[:,1,0] = position_offsetL pairs[:,1,1] = reward_low pairs[:,1,2] = 1 - location_int return pairs @staticmethod def randomwalk_probabilistic_reward(length=1000,reward_high_prob=80,reward_low_prob=40,reward_high_span = 20, reward_low_span = 20,step_size_mean = 0, step_size_var = 1): pairs = colored_targets_with_randomwalk_reward(length=length,reward_high_prob=reward_high_prob,reward_low_prob=reward_low_prob,reward_high_span = reward_high_span, reward_low_span = reward_low_span,step_size_mean = step_size_mean, step_size_var = step_size_var) return pairs
def __init__(self, *args, **kwargs): # Initialize the dynamics world # world = ode.World() # TODO this should be part of the window, for object collision detection stuff # world.setGravity((0,0,0)) # Arm link lengths----from monkey P? Numbers taken from MATLAB code originally written by Rodolphe Heliot/Amy Orsborn # Changed to these values because most common among old code. Cheng & Scott 2000 Table 2 has other values if change needed self.l_ua = 0.01 * 17.70 # m self.l_fa = 0.01 * 20.35 # m # Friction coefficients self.B = np.mat([[0.03, 0.01], [0.01, 0.03]]) # Mass of upperarm/forearm from Cheng & Scott, 2000, p221, Table 8 (based on morphometric data) self.m_ua = 0.001*(23 + 34.4*body_weight) # kg (regression data specified in grams) self.m_fa = 0.001*(53 + 25.2*body_weight) # kg ## Determine the inertia of each segment rad_of_gyration = np.array([0.247, 0.248]) # relative to the length of each segment # Calculate center of mass for each segment self.r_ua = self.ctr_of_mass_ua = self.l_ua * rad_of_gyration[0] self.r_fa = self.ctr_of_mass_fa = self.l_fa * rad_of_gyration[1] # Calculate moment of inertia for each segment # i = 0.001 * 0.0001 * (b + m*total_body_weight), where 'b' and 'm' are from Cheng & Scott 2000, p221, Table 8 # 0.001 * 0.0001 converts (g cm^2) ==> (kg m^2) self.I_ua = 0.001*0.0001*(432 + 356.6*body_weight) self.I_fa = 0.001*0.0001*(2381 + 861.6*body_weight) self.num_joints = 2 self.theta = np.zeros(2) # angular self.omega = np.zeros(2) # angular vel self.alpha = np.zeros(2) # angular acc self.torque = np.zeros(2) base_loc = np.array([2., 0., -15]) self.base_loc = base_loc link_radii=arm_radius joint_radii=arm_radius joint_colors=arm_color link_colors=arm_color self.link_lengths = link_lengths = np.array([self.l_ua, self.l_fa]) self.curr_vecs = np.zeros([self.num_joints, 3]) #rows go from proximal to distal links self.chain = Chain(link_radii, joint_radii, list(link_lengths * 100), joint_colors, link_colors) self.cursor = Sphere(radius=arm_radius/2, color=link_colors) self.graphics_models = [self.chain.link_groups[0], self.cursor] self.chain.translate(*self.base_loc, reset=True) self.kin_chain = robot_arms.PlanarXZKinematicChain2Link(link_lengths * 100, base_loc=base_loc) # Multiplying by 100 to convert from m to cm self.stay_on_screen = False self.visible = True self.n_muscles = len(muscles) self.muscle_vel = np.zeros(self.n_muscles) self.call_count = 0
class ActiveExoPlant(plants.Plant): n_joints = 5 force_sensor_offset = 1544. def __init__(self, *args, **kwargs): if SIM: self.rx_port = ('localhost', 60000) self.tx_port = ('localhost', 60001) else: self.rx_port = ('10.0.0.1', 60000) self.tx_port = ('10.0.0.14', 60001) self.has_force_sensor = kwargs.pop('has_force_sensor', True) self.hdf_attrs = [('joint_angles', 'f8', (5,)), ('joint_velocities', 'f8', (5,)), ('joint_applied_torque', 'f8', (5,)),] if self.has_force_sensor and not ('endpt_force' in self.hdf_attrs): self.hdf_attrs.append(('endpt_force', 'f8', (1,))) # Initialize sockets for transmitting velocity commands / receiving sensor data tx_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.tx_sock = tx_sock ## kinematic chain self.kin_chain = ActiveExoChain() # joint limits in radians, based on mechanical limits---some configurations # may still be outside the comfortable range for the subject self.kin_chain.joint_limits = [(-1.25, 1.25), (0, 1.7), (-0.95, 0.9), (0, 1.4), (-1.5, 1.5)] ## Graphics, for experimenter only self.link_lengths = link_lengths self.cursor = Sphere(radius=arm_radius/2, color=arm_color) self.upperarm_graphics = Cylinder(radius=arm_radius, height=self.link_lengths[0], color=arm_color) # self.upperarm_graphics.xfm.translate(*exo_chain_graphics_base_loc) self.forearm_graphics = Cone(radius1=arm_radius, radius2=arm_radius/3, height=self.link_lengths[1], color=arm_color) self.forearm_graphics.xfm.translate(*exo_chain_graphics_base_loc) self.graphics_models = [self.upperarm_graphics, self.forearm_graphics, self.cursor] self.enabled = True super(ActiveExoPlant, self).__init__(*args, **kwargs) def disable(self): self.enabled = False def enable(self): self.enabled = True def start(self): self.rx_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.rx_sock.bind(self.rx_port) super(ActiveExoPlant, self).start() def _get_sensor_data(self): if not hasattr(self, 'rx_sock'): raise Exception("You seem to have forgotten to 'start' the plant!") tx_sock, rx_sock = self.tx_sock, self.rx_sock tx_sock.sendto('s', self.tx_port) self._read_sock() def _check_if_ready(self): tx_sock, rx_sock = self.tx_sock, self.rx_sock socket_list = [self.rx_sock] tx_sock.sendto('s', self.tx_port) time.sleep(0.5) # Get the list sockets which are readable read_sockets, write_sockets, error_sockets = select.select(socket_list , [], [], 0) return self.rx_sock in read_sockets def _read_sock(self): n_header_bytes = 4 n_bytes_per_int = 2 n_rx_bytes = n_header_bytes*3 + 3*self.n_joints*n_bytes_per_double fmt = '>IdddddIdddddIddddd' if self.has_force_sensor: n_rx_bytes += n_bytes_per_int fmt += 'H' bin_data = self.rx_sock.recvfrom(n_rx_bytes) data = np.array(struct.unpack(fmt, bin_data[0])) if self.has_force_sensor: force_adc_data = data[-1] frac_of_max_force = (force_adc_data - self.force_sensor_offset)/(2**14 - self.force_sensor_offset) force_lbs = frac_of_max_force * 10 force_N = force_lbs * 4.448221628254617 self.force_N = max(force_N, 0) # force must be positive for this sensor data = data[:-1] data = data.reshape(3, self.n_joints + 1) data = data[:,1:] self.joint_angles, self.joint_velocities, self.joint_applied_torque = data def get_data_to_save(self): if not hasattr(self, 'joint_angles'): print "No data has been acquired yet!" return dict() data = dict(joint_angles=self.joint_angles, joint_velocities=self.joint_velocities, joint_applied_torque=self.joint_applied_torque) if self.has_force_sensor: data['endpt_force'] = self.force_N return data def _set_joint_velocity(self, vel): if not len(vel) == self.n_joints: raise ValueError("Improper number of joint velocities!") if self.enabled: vel = vel.ravel() else: vel = np.zeros(5) self.tx_sock.sendto(struct.pack('>I' + 'd'*self.n_joints, self.n_joints, vel[0], vel[1], vel[2], vel[3], vel[4]), self.tx_port) self._read_sock() def stop_vel(self): self._set_joint_velocity(np.zeros(5)) def stop(self): self.rx_sock.close() print "RX socket closed!" def set_intrinsic_coordinates(self, theta): ''' Set the joint by specifying the angle in radians. Theta is a list of angles. If an element of theta = NaN, angle should remain the same. ''' joint_locations = self.kin_chain.spatial_positions_of_joints(theta) vec_sh_to_elbow = joint_locations[:,2] vec_elbow_to_endpt = joint_locations[:,4] - joint_locations[:,2] self.upperarm_graphics.xfm.rotate = Quaternion.rotate_vecs((0,0,1), vec_sh_to_elbow) # self.upperarm_graphics.xfm.translate(*exo_chain_graphics_base_loc) self.forearm_graphics.xfm.rotate = Quaternion.rotate_vecs((0,0,1), vec_elbow_to_endpt) self.forearm_graphics.xfm.translate(*vec_sh_to_elbow, reset=True) self.upperarm_graphics._recache_xfm() self.forearm_graphics._recache_xfm() self.cursor.translate(*self.get_endpoint_pos(), reset=True) def get_intrinsic_coordinates(self, new=False): if new or not hasattr(self, 'joint_angles'): self._get_sensor_data() return self.joint_angles def get_endpoint_pos(self): if not hasattr(self, 'joint_angles'): self._get_sensor_data() return self.kin_chain.endpoint_pos(self.joint_angles) def draw_state(self): self._get_sensor_data() self.set_intrinsic_coordinates(self.joint_angles) def drive(self, decoder): # import pdb; pdb.set_trace() joint_vel = decoder['qdot'] joint_vel[joint_vel > 0.2] = 0.2 joint_vel[joint_vel < -0.2] = -0.2 joint_vel[np.abs(joint_vel) < 0.02] = 0 # send the command to the robot self._set_joint_velocity(joint_vel) # set the decoder state to the actual joint angles decoder['q'] = self.joint_angles self.set_intrinsic_coordinates(self.joint_angles) def vel_control_to_joint_config(self, fb_ctrl, target_config, sim=True, control_rate=10, tol=np.deg2rad(10)): ''' Parameters ---------- control_rate : int Control rate, in Hz ''' target_state = np.hstack([target_config, np.zeros_like(target_config), np.zeros_like(target_config), 1]) target_state = np.mat(target_state.reshape(-1,1)) if not sim: self._get_sensor_data() else: # assume that self.joint_angles has been automagically set pass current_state = np.hstack([self.joint_angles, np.zeros_like(target_config), np.zeros_like(target_config), 1]) current_state = np.mat(current_state.reshape(-1,1)) N = 250 traj = np.zeros([current_state.shape[0], N]) * np.nan for k in range(250): print k current_config = np.array(current_state[0:5, 0]).ravel() # print current_config if np.all(np.abs(current_config - target_config) < tol): print np.abs(current_config - target_config) print tol break current_state = fb_ctrl.calc_next_state(current_state, target_state) traj[:,k] = np.array(current_state).ravel() if sim: pass else: current_vel = np.array(current_state[5:10,0]).ravel() self._set_joint_velocity(current_vel) # update the current state using the joint encoders current_state = np.hstack([self.joint_angles, np.zeros_like(target_config), np.zeros_like(target_config), 1]) current_state = np.mat(current_state.reshape(-1,1)) time.sleep(1./control_rate) return traj
class TestBoundary(Window): ''' A very simple task that displays a marker at the specified screen locations. Useful for determining reasonable boundary values for targets. ''' status = dict(wait=dict(stop=None)) state = "wait" boundaries = traits.Tuple((-18, 18, -10, 10, -12, 12), desc="x,y,z boundaries to display") def __init__(self, **kwargs): super(TestBoundary, self).__init__(**kwargs) # Create a small sphere for each of the 6 boundary marks self.xmin = Sphere(radius=.1, color=(.5, 0, .5, 1)) self.add_model(self.xmin) self.xmax = Sphere(radius=.1, color=(.5, 0, .5, 1)) self.add_model(self.xmax) self.ymin = Sphere(radius=.1, color=(.5, 0, .5, 1)) self.add_model(self.ymin) self.ymax = Sphere(radius=.1, color=(.5, 0, .5, 1)) self.add_model(self.ymax) self.zmin = Sphere(radius=.1, color=(.5, 0, .5, 1)) self.add_model(self.zmin) self.zmax = Sphere(radius=.1, color=(.5, 0, .5, 1)) self.add_model(self.zmax) def _start_wait(self): self.xmin.translate(self.boundaries[0], 0, 0, reset=True) self.xmin.attach() self.xmax.translate(self.boundaries[1], 0, 0, reset=True) self.xmax.attach() self.ymin.translate(0, self.boundaries[2], 0, reset=True) self.ymin.attach() self.ymax.translate(0, self.boundaries[3], 0, reset=True) self.ymax.attach() self.zmin.translate(0, 0, self.boundaries[4], reset=True) self.zmin.attach() self.zmax.translate(0, 0, self.boundaries[5], reset=True) self.zmax.attach() self.requeue() def _while_wait(self): self.draw_world()
def __init__(self, **kwargs): super(FixationTraining, self).__init__(**kwargs) self.fixation_point = Sphere(radius=.1, color=(1, 0, 0, 1))