def from_vector(self, vector_data): """Get the geobox to use for the grid. Parameters ---------- vector_data: str or :obj:`geopandas.GeoDataFrame` A file path to an OGR supported source or GeoDataFrame containing the vector data. Returns ------- :obj:`datacube.utils.geometry.GeoBox` The geobox for the grid to be generated from the vector data. """ vector_data = load_vector_data(vector_data) if self.like is not None: assert (self.output_crs is None), "'like' and 'output_crs' are not supported together" assert (self.resolution is None), "'like' and 'resolution' are not supported together" assert self.align is None, "'like' and 'align' are not supported together" try: geobox = self.like.geobox except AttributeError: geobox = geobox_from_rio(self.like) return geobox if self.resolution is None: raise RuntimeError( "Must specify 'resolution' if 'like' not specified.") if self.output_crs: crs = geometry.CRS(crs_to_wkt(self.output_crs)) else: crs = geometry.CRS(crs_to_wkt(vector_data.crs)) if self.geom is None and self.output_crs: geopoly = geometry.Geometry( mapping( box(*vector_data.to_crs(_datacube_to_geopandas_crs( crs)).total_bounds)), crs=crs, ) elif self.geom is None: geopoly = geometry.Geometry(mapping( box(*vector_data.total_bounds)), crs=crs) else: geom_json = json.loads(self.geom) geom_crs = geometry.CRS(geom_json["crs"]["properties"]["name"] if "crs" in geom_json else "epsg:4326") geopoly = geometry.Geometry(geom_json, crs=geom_crs) return geometry.GeoBox.from_geopolygon(geopoly, self.resolution, crs, self.align)
def reproject_match(self, match_data_array, resampling=Resampling.nearest): """ Reproject a DataArray object to match the resolution, projection, and region of another DataArray. Powered by `rasterio.warp.reproject` .. note:: Only 2D/3D arrays with dimensions 'x'/'y' are currently supported. Requires either a grid mapping variable with 'spatial_ref' or a 'crs' attribute to be set containing a valid CRS. If using a WKT (e.g. from spatiareference.org), make sure it is an OGC WKT. Parameters ---------- match_data_array: :obj:`xarray.DataArray` | :obj:`xarray.Dataset` DataArray of the target resolution and projection. resampling: Resampling method, optional See rasterio.warp.reproject for more details. Returns -------- :obj:`xarray.DataArray`: Contains the data from the src_data_array, reprojected to match match_data_array. """ dst_crs = crs_to_wkt(match_data_array.rio.crs) return self.reproject( dst_crs, transform=match_data_array.rio.transform(recalc=True), shape=match_data_array.rio.shape, resampling=resampling, )
def write_crs(self, input_crs=None, grid_mapping_name=DEFAULT_GRID_MAP, inplace=False): """ Write the CRS to the dataset in a CF compliant manner. Parameters ---------- input_crs: object Anything accepted by `rasterio.crs.CRS.from_user_input`. grid_mapping_name: str, optional Name of the coordinate to store the CRS information in. inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- xarray.Dataset or xarray.DataArray: Modified dataset with CF compliant CRS information. """ if input_crs is not None: data_obj = self.set_crs(input_crs, inplace=inplace) else: data_obj = self._get_obj(inplace=inplace) # remove old grid maping coordinate if exists try: del data_obj.coords[grid_mapping_name] except KeyError: pass if data_obj.rio.crs is None: raise MissingCRS( "CRS not found. Please set the CRS with 'set_crs()'.") # add grid mapping coordinate data_obj.coords[grid_mapping_name] = xarray.Variable((), 0) crs_wkt = crs_to_wkt(data_obj.rio.crs) grid_map_attrs = dict() grid_map_attrs["spatial_ref"] = crs_wkt # http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#appendix-grid-mappings # http://desktop.arcgis.com/en/arcmap/10.3/manage-data/netcdf/spatial-reference-for-netcdf-data.htm grid_map_attrs["crs_wkt"] = crs_wkt data_obj.coords[grid_mapping_name].rio.set_attrs(grid_map_attrs, inplace=True) # add grid mapping attribute to variables if hasattr(data_obj, "data_vars"): for var in data_obj.data_vars: if (self.x_dim in data_obj[var].dims and self.y_dim in data_obj[var].dims): data_obj[var].rio.update_attrs( dict(grid_mapping=grid_mapping_name), inplace=True) data_obj.rio.update_attrs(dict(grid_mapping=grid_mapping_name), inplace=True) return data_obj
def write_crs(self, input_crs=None, grid_mapping_name=None, inplace=False): """ Write the CRS to the dataset in a CF compliant manner. Parameters ---------- input_crs: object Anything accepted by `rasterio.crs.CRS.from_user_input`. grid_mapping_name: str, optional Name of the grid_mapping coordinate to store the CRS information in. Default is the grid_mapping name of the dataset. inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: Modified dataset with CF compliant CRS information. """ if input_crs is not None: data_obj = self.set_crs(input_crs, inplace=inplace) else: data_obj = self._get_obj(inplace=inplace) # get original transform transform = self._cached_transform() # remove old grid maping coordinate if exists grid_mapping_name = (self.grid_mapping if grid_mapping_name is None else grid_mapping_name) try: del data_obj.coords[grid_mapping_name] except KeyError: pass if data_obj.rio.crs is None: raise MissingCRS( "CRS not found. Please set the CRS with 'rio.write_crs()'.") # add grid mapping coordinate data_obj.coords[grid_mapping_name] = xarray.Variable((), 0) grid_map_attrs = pyproj.CRS.from_user_input(data_obj.rio.crs).to_cf() # spatial_ref is for compatibility with GDAL crs_wkt = crs_to_wkt(data_obj.rio.crs) grid_map_attrs["spatial_ref"] = crs_wkt grid_map_attrs["crs_wkt"] = crs_wkt if transform is not None: grid_map_attrs["GeoTransform"] = " ".join( [str(item) for item in transform.to_gdal()]) data_obj.coords[grid_mapping_name].rio.set_attrs(grid_map_attrs, inplace=True) return data_obj.rio.write_grid_mapping( grid_mapping_name=grid_mapping_name, inplace=True)
def add_spatial_ref(in_ds, dst_crs, grid_map_name): # remove old grid map if exists try: del in_ds.coords[grid_map_name] except KeyError: pass # add grid mapping variable in_ds.coords[grid_map_name] = xarray.Variable((), 0) match_proj = crs_to_wkt(CRS.from_user_input(dst_crs)) grid_map_attrs = dict() # add grid mapping variable grid_map_attrs["spatial_ref"] = match_proj # http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#appendix-grid-mappings # http://desktop.arcgis.com/en/arcmap/10.3/manage-data/netcdf/spatial-reference-for-netcdf-data.htm grid_map_attrs["crs_wkt"] = match_proj in_ds.coords[grid_map_name].attrs = grid_map_attrs return in_ds
def set_crs(self, input_crs, inplace=True): """ Set the CRS value for the Dataset/DataArray without modifying the dataset/data array. Parameters ---------- input_crs: object Anything accepted by `rasterio.crs.CRS.from_user_input`. inplace: bool, optional If True, it will write to the existing dataset. Default is False. Returns ------- :obj:`xarray.Dataset` | :obj:`xarray.DataArray`: Dataset with crs attribute. """ crs = CRS.from_wkt(crs_to_wkt(input_crs)) obj = self._get_obj(inplace=inplace) obj.rio._crs = crs return obj
def geobox_from_rio(xds): """This function retrieves the geobox using rioxarray extension. Parameters ---------- xds: :obj:`xarray.DataArray` or :obj:`xarray.Dataset` The xarray dataset to get the geobox from. Returns ------- :obj:`datacube.utils.geometry.GeoBox` """ width, height = xds.rio.shape try: transform = xds.rio.transform() except AttributeError: transform = xds[xds.rio.vars[0]].rio.transform() return geometry.GeoBox( width=width, height=height, affine=transform, crs=geometry.CRS(crs_to_wkt(xds.rio.crs)), )
def clip( self, geometries, crs=None, all_touched=False, drop=True, invert=False, from_disk=False, ): """ Crops a :obj:`xarray.DataArray` by geojson like geometry dicts. Powered by `rasterio.features.geometry_mask`. Examples: >>> geometry = ''' {"type": "Polygon", ... "coordinates": [ ... [[-94.07955380199459, 41.69085871273774], ... [-94.06082436942204, 41.69103313774798], ... [-94.06063203899649, 41.67932439500822], ... [-94.07935807746362, 41.679150041277325], ... [-94.07955380199459, 41.69085871273774]]]}''' >>> cropping_geometries = [geojson.loads(geometry)] >>> xds = xarray.open_rasterio('cool_raster.tif') >>> cropped = xds.rio.clip(geometries=cropping_geometries, crs=4326) .. versionadded:: 0.2 from_disk Parameters ---------- geometries: list A list of geojson geometry dicts or objects with __geom_interface__ with if you have rasterio 1.2+. crs: :obj:`rasterio.crs.CRS`, optional The CRS of the input geometries. Default is to assume it is the same as the dataset. all_touched : bool, optional If True, all pixels touched by geometries will be burned in. If false, only pixels whose center is within the polygon or that are selected by Bresenham's line algorithm will be burned in. drop: bool, optional If True, drop the data outside of the extent of the mask geoemtries Otherwise, it will return the same raster with the data masked. Default is True. invert: boolean, optional If False, pixels that do not overlap shapes will be set as nodata. Otherwise, pixels that overlap the shapes will be set as nodata. False by default. from_disk: boolean, optional If True, it will clip from disk using rasterio.mask.mask if possible. This is beneficial when the size of the data is larger than memory. Default is False. Returns ------- :obj:`xarray.DataArray`: The clipped object. """ if self.crs is None: raise MissingCRS( "CRS not found. Please set the CRS with 'rio.write_crs()'." f"{_get_data_var_message(self._obj)}") crs = CRS.from_wkt(crs_to_wkt(crs)) if crs is not None else self.crs if self.crs != crs: if LooseVersion(rasterio.__version__) >= LooseVersion("1.2"): geometries = rasterio.warp.transform_geom( crs, self.crs, geometries) else: geometries = [ rasterio.warp.transform_geom(crs, self.crs, geometry) for geometry in geometries ] cropped_ds = None if from_disk: cropped_ds = _clip_from_disk( self._obj, geometries=geometries, all_touched=all_touched, drop=drop, invert=invert, ) if cropped_ds is None: cropped_ds = _clip_xarray( self._obj, geometries=geometries, all_touched=all_touched, drop=drop, invert=invert, ) if (cropped_ds.coords[self.x_dim].size < 1 or cropped_ds.coords[self.y_dim].size < 1): raise NoDataInBounds( f"No data found in bounds.{_get_data_var_message(self._obj)}") # make sure correct attributes preserved & projection added _add_attrs_proj(cropped_ds, self._obj) return cropped_ds