コード例 #1
0
ファイル: Portfolio.py プロジェクト: fagan2888/Riskfolio-Lib
    def factors_stats(self, method_mu="hist", method_cov="hist", **kwargs):
        r"""
        Calculate the inputs that will be use by the optimization method when 
        we select the input model='FM'.
        
        Parameters
        ----------
        **kwargs : dict
            All aditional parameters of risk_factors function.

        See Also
        --------
        riskfolio.ParamsEstimation.forward_regression
        riskfolio.ParamsEstimation.backward_regression
        riskfolio.ParamsEstimation.loadings_matrix
        riskfolio.ParamsEstimation.risk_factors

        """
        X = self.factors
        Y = self.returns
        mu, cov, returns, nav = pe.risk_factors(
            X, Y, method_mu=method_mu, method_cov=method_cov, **kwargs
        )

        self.mu_fm = mu
        self.cov_fm = cov
        self.returns_fm = returns
        self.nav_fm = nav

        value = af.is_pos_def(self.cov_fm, threshold=1e-8)
        if value == False:
            print("You must convert self.cov_fm to a positive definite matrix")
コード例 #2
0
    def _hierarchical_clustering_herc(self,
                                      linkage="ward",
                                      max_k=10,
                                      leaf_order=True):

        # hierarchcial clustering
        dist = np.sqrt((1 - self.corr).round(8) / 2)
        dist = pd.DataFrame(dist,
                            columns=self.corr.columns,
                            index=self.corr.index)
        p_dist = squareform(dist, checks=False)
        clustering = hr.linkage(p_dist,
                                method=linkage,
                                optimal_ordering=leaf_order)

        # optimal number of clusters
        k = af.two_diff_gap_stat(self.corr, dist, clustering, max_k)

        return clustering, k
コード例 #3
0
ファイル: Portfolio.py プロジェクト: fagan2888/Riskfolio-Lib
    def assets_stats(self, method_mu="hist", method_cov="hist", **kwargs):
        r"""
        Calculate the inputs that will be use by the optimization method when 
        we select the input model='Classic'.

        Parameters
        ----------
        **kwargs : dict
            All aditional parameters of mean_vector and covar_matrix functions.

        See Also
        --------
        riskfolio.ParamsEstimation.mean_vector
        riskfolio.ParamsEstimation.covar_matrix

        """

        self.mu = pe.mean_vector(self.returns, method=method_mu, **kwargs)
        self.cov = pe.covar_matrix(self.returns, method=method_cov, **kwargs)
        value = af.is_pos_def(self.cov, threshold=1e-8)
        if value == False:
            print("You must convert self.cov to a positive definite matrix")
コード例 #4
0
    def optimization(
        self,
        model="HRP",
        correlation="pearson",
        covariance="hist",
        rm="MV",
        rf=0,
        linkage="single",
        k=None,
        max_k=10,
        leaf_order=True,
        d=0.94,
    ):
        r"""
        This method calculates the optimal portfolio according to the
        optimization model selected by the user.

        Parameters
        ----------
        model : str can be {'HRP', 'HERC' or 'HERC2'}
            The hierarchical cluster portfolio model used for optimize the
            portfolio. The default is 'HRP'. Posible values are:

            - 'HRP': Hierarchical Risk Parity.
            - 'HERC': Hierarchical Equal Risk Contribution.
            - 'HERC2': HERC but splitting weights equally within clusters.

        correlation : str can be {'pearson', 'spearman' or 'distance'}.
            The correlation matrix used for create the clusters.
            The default is 'pearson'. Posible values are:

            - 'pearson': pearson correlation matrix.
            - 'spearman': spearman correlation matrix.
            - 'abs_pearson': absolute value pearson correlation matrix.
            - 'abs_spearman': absolute value spearman correlation matrix.
            - 'distance': distance correlation matrix.

        covariance : str, can be {'hist', 'ewma1', 'ewma2', 'ledoit', 'oas' or 'shrunk'}
            The method used to estimate the covariance matrix:
            The default is 'hist'.

            - 'hist': use historical estimates.
            - 'ewma1'': use ewma with adjust=True, see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#exponentially-weighted-windows>`_ for more details.
            - 'ewma2': use ewma with adjust=False, see `EWM <https://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#exponentially-weighted-windows>`_ for more details.
            - 'ledoit': use the Ledoit and Wolf Shrinkage method.
            - 'oas': use the Oracle Approximation Shrinkage method.
            - 'shrunk': use the basic Shrunk Covariance method.

        rm : str, optional
            The risk measure used to optimze the portfolio.
            The default is 'MV'. Posible values are:

            - 'equal': Equally weighted.
            - 'vol': Standard Deviation.
            - 'MV': Variance.
            - 'MAD': Mean Absolute Deviation.
            - 'MSV': Semi Standard Deviation.
            - 'FLPM': First Lower Partial Moment (Omega Ratio).
            - 'SLPM': Second Lower Partial Moment (Sortino Ratio).
            - 'VaR': Value at Risk.
            - 'CVaR': Conditional Value at Risk.
            - 'EVaR': Entropic Value at Risk.
            - 'WR': Worst Realization (Minimax)
            - 'MDD': Maximum Drawdown of uncompounded cumulative returns (Calmar Ratio).
            - 'ADD': Average Drawdown of uncompounded cumulative returns.
            - 'DaR': Drawdown at Risk of uncompounded cumulative returns.
            - 'CDaR': Conditional Drawdown at Risk of uncompounded cumulative returns.
            - 'EDaR': Entropic Drawdown at Risk of uncompounded cumulative returns.
            - 'UCI': Ulcer Index of uncompounded cumulative returns.
            - 'MDD_Rel': Maximum Drawdown of compounded cumulative returns (Calmar Ratio).
            - 'ADD_Rel': Average Drawdown of compounded cumulative returns.
            - 'DaR_Rel': Drawdown at Risk of compounded cumulative returns.
            - 'CDaR_Rel': Conditional Drawdown at Risk of compounded cumulative returns.
            - 'EDaR_Rel': Entropic Drawdown at Risk of compounded cumulative returns.
            - 'UCI_Rel': Ulcer Index of compounded cumulative returns.

        rf : float, optional
            Risk free rate, must be in the same period of assets returns.
            The default is 0.
        linkage : string, optional
            Linkage method of hierarchical clustering, see `linkage <https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html?highlight=linkage#scipy.cluster.hierarchy.linkage>`_ for more details.
            The default is 'single'. Posible values are:

            - 'single'.
            - 'complete'.
            - 'average'.
            - 'weighted'.
            - 'centroid'.
            - 'median'.
            - 'ward'.

        k : int, optional
            Number of clusters. This value is took instead of the optimal number
            of clusters calculated with the two difference gap statistic.
            The default is None.
        max_k : int, optional
            Max number of clusters used by the two difference gap statistic
            to find the optimal number of clusters. The default is 10.
        leaf_order : bool, optional
            Indicates if the cluster are ordered so that the distance between
            successive leaves is minimal. The default is True.
        d : scalar
            The smoothing factor of ewma methods.
            The default is 0.94.

        Returns
        -------
        w : DataFrame
            The weights of optimal portfolio.

        """

        # Correlation matrix from covariance matrix
        self.cov = pe.covar_matrix(self.returns, method=covariance, d=0.94)

        if correlation in {"pearson", "spearman"}:
            self.corr = self.returns.corr(method=correlation).astype(float)
        if correlation in {"abs_pearson", "abs_spearman"}:
            self.corr = np.abs(
                self.returns.corr(method=correlation[4:])).astype(float)
        elif correlation == "distance":
            self.corr = af.dcorr_matrix(self.returns).astype(float)

        # Step-1: Tree clustering
        if model == "HRP":
            self.clusters = self._hierarchical_clustering_hrp(
                linkage, leaf_order=leaf_order)
        elif model in ["HERC", "HERC2"]:
            self.clusters, self.k = self._hierarchical_clustering_herc(
                linkage, max_k, leaf_order=leaf_order)
            if k is not None:
                self.k = int(k)

        # Step-2: Seriation (Quasi-Diagnalization)
        self.sort_order = self._seriation(self.clusters)
        asset_order = self.assetslist
        asset_order[:] = [self.assetslist[i] for i in self.sort_order]
        self.asset_order = asset_order
        self.corr_sorted = self.corr.reindex(index=self.asset_order,
                                             columns=self.asset_order)

        # Step-3: Recursive bisection
        if model == "HRP":
            weights = self._recursive_bisection(self.sort_order, rm=rm, rf=rf)
        elif model in ["HERC", "HERC2"]:
            weights = self._hierarchical_recursive_bisection(self.clusters,
                                                             rm=rm,
                                                             rf=rf,
                                                             linkage=linkage,
                                                             model=model)

        weights = weights.loc[self.assetslist].to_frame()
        weights.columns = ["weights"]

        return weights
コード例 #5
0
def assets_clusters(returns,
                    correlation="pearson",
                    linkage="ward",
                    k=None,
                    max_k=10,
                    leaf_order=True):
    r"""
    Create asset classes based on hierarchical clustering.
    
    Parameters
    ----------
    returns : DataFrame
        Assets returns.

    correlation : str can be {'pearson', 'spearman' or 'distance'}.
        The correlation matrix used for create the clusters.
        The default is 'pearson'. Posible values are:

        - 'pearson': pearson correlation matrix.
        - 'spearman': spearman correlation matrix.
        - 'abs_pearson': absolute value pearson correlation matrix.
        - 'abs_spearman': absolute value spearman correlation matrix.
        - 'distance': distance correlation matrix.

    linkage : string, optional
        Linkage method of hierarchical clustering, see `linkage <https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html?highlight=linkage#scipy.cluster.hierarchy.linkage>`_ for more details.
        The default is 'single'. Posible values are:

        - 'single'.
        - 'complete'.
        - 'average'.
        - 'weighted'.
        - 'centroid'.
        - 'median'.
        - 'ward'.
    
    k : int, optional
        Number of clusters. This value is took instead of the optimal number
        of clusters calculated with the two difference gap statistic.
        The default is None.
    max_k : int, optional
        Max number of clusters used by the two difference gap statistic
        to find the optimal number of clusters. The default is 10.
    leaf_order : bool, optional
        Indicates if the cluster are ordered so that the distance between
        successive leaves is minimal. The default is True.
    
    Returns
    -------
    clusters : DataFrame
        A dataframe with asset classes based on hierarchical clustering.
            
    Raises
    ------
        ValueError when the value cannot be calculated.

    Examples
    --------

    ::

        clusters = cf.assets_clusters(returns, correlation='pearson', linkage='ward', k=None, max_k=10, leaf_order=True)


    The clusters dataframe looks like this:

    .. image:: images/clusters_df.png

    """

    if not isinstance(returns, pd.DataFrame):
        raise ValueError("returns must be a DataFrame")

    # Correlation matrix from covariance matrix
    if correlation in {"pearson", "spearman"}:
        corr = returns.corr(method=correlation)
    if correlation in {"abs_pearson", "abs_spearman"}:
        corr = np.abs(returns.corr(method=correlation[4:]))
    elif correlation == "distance":
        corr = af.dcorr_matrix(returns)

    # hierarchcial clustering
    dist = np.sqrt((1 - corr).round(8) / 2)
    dist = pd.DataFrame(dist, columns=corr.columns, index=corr.index)
    p_dist = squareform(dist, checks=False)
    clustering = hr.linkage(p_dist,
                            method=linkage,
                            optimal_ordering=leaf_order)

    if k is None:
        # optimal number of clusters
        k = af.two_diff_gap_stat(corr, dist, clustering, max_k)

    clusters_inds = hr.fcluster(clustering, k, criterion="maxclust")

    clusters = {"Assets": [], "Clusters": []}

    for i, v in enumerate(clusters_inds):
        clusters["Assets"].append(corr.columns.tolist()[i])
        clusters["Clusters"].append("Cluster " + str(v))

    clusters = pd.DataFrame(clusters)
    clusters = clusters.sort_values(by=["Assets"])

    return clusters
コード例 #6
0
ファイル: Portfolio.py プロジェクト: fagan2888/Riskfolio-Lib
    def optimization(
        self, model="Classic", rm="MV", obj="Sharpe", rf=0, l=2, hist=True
    ):
        r"""
        This method that calculates the optimum portfolio according to the
        optimization model selected by the user. The general problem that
        solves is:
        
        .. math::
            \begin{align}
            &\underset{x}{\text{optimize}} & & F(w)\\
            &\text{s. t.} & & Aw \geq B\\
            & & & \phi_{i}(w) \leq c_{i}\\
            \end{align}
        
        Where:
            
        :math:`F(w)` is the objective function.
    
        :math:`Aw \geq B` is a set of linear constraints.
    
        :math:`\phi_{i}(w) \leq c_{i}` are constraints on maximum values of
        several risk measures.
        
        Parameters
        ----------
        model : str can be 'Classic', 'BL' or 'FM'
            The model used for optimize the portfolio.
            The default is 'Classic'. Posible values are:

            - 'Classic': use estimates of expected return vector and covariance matrix that depends on historical data.
            - 'BL': use estimates of expected return vector and covariance matrix based on the Black Litterman model.
            - 'FM': use estimates of expected return vector and covariance matrix based on a Risk Factor model specified by the user.
            
        rm : str, optional
            The risk measure used to optimze the portfolio.
            The default is 'MV'. Posible values are:
            
            - 'MV': Standard Deviation.
            - 'MAD': Mean Absolute Deviation.
            - 'MSV': Semi Standard Deviation.
            - 'FLPM': First Lower Partial Moment (Omega Ratio).
            - 'SLPM': Second Lower Partial Moment (Sortino Ratio).
            - 'CVaR': Conditional Value at Risk.
            - 'WR': Worst Realization (Minimax)
            - 'MDD': Maximum Drawdown of uncompounded returns (Calmar Ratio).
            - 'ADD': Average Drawdown of uncompounded returns.
            - 'CDaR': Conditional Drawdown at Risk of uncompounded returns.
            
        obj : str can be {'MinRisk', 'Utility', 'Sharpe' or 'MaxRet'.
            Objective function of the optimization model.
            The default is 'Sharpe'. Posible values are:

            - 'MinRisk': Minimize the selected risk measure.
            - 'Utility': Maximize the Utility function :math:`mu w - l \phi_{i}(w)`.
            - 'Sharpe': Maximize the risk adjusted return ratio based on the selected risk measure.
            - 'MaxRet': Maximize the expected return of the portfolio.
                
        rf : float, optional
            Risk free rate, must be in the same period of assets returns.
            The default is 0.
        l : scalar, optional
            Risk aversion factor of the 'Utility' objective function.
            The default is 2.
        hist : bool, optional
            Indicate if uses historical or factor estimation of returns to 
            calculate risk measures that depends on scenarios (All except
            'MV' risk measure). The default is True.

        Returns
        -------
        w : DataFrame
            The weights of optimum portfolio.

        """

        # General model Variables

        mu = None
        sigma = None
        returns = None
        if model == "Classic":
            mu = np.matrix(self.mu)
            sigma = np.matrix(self.cov)
            returns = np.matrix(self.returns)
            nav = np.matrix(self.nav)
        elif model == "FM":
            mu = np.matrix(self.mu_fm)
            if hist == False:
                sigma = np.matrix(self.cov_fm)
                returns = np.matrix(self.returns_fm)
                nav = np.matrix(self.nav_fm)
            elif hist == True:
                sigma = np.matrix(self.cov)
                returns = np.matrix(self.returns)
                nav = np.matrix(self.nav)
        elif model == "BL":
            mu = np.matrix(self.mu_bl)
            if hist == False:
                sigma = np.matrix(self.cov_bl)
            elif hist == True:
                sigma = np.matrix(self.cov)
            returns = np.matrix(self.returns)
            nav = np.matrix(self.nav)
        elif model == "BL_FM":
            mu = np.matrix(self.mu_bl_fm)
            if hist == False:
                sigma = np.matrix(self.cov_bl_fm)
                returns = np.matrix(self.returns_fm)
                nav = np.matrix(self.nav_fm)
            elif hist == True:
                sigma = np.matrix(self.cov)
                returns = np.matrix(self.returns)
                nav = np.matrix(self.nav)

        # General Model Variables

        returns = np.matrix(returns)
        w = cv.Variable((mu.shape[1], 1))
        k = cv.Variable((1, 1))
        rf0 = cv.Parameter(nonneg=True)
        rf0.value = rf
        n = cv.Parameter(nonneg=True)
        n.value = returns.shape[0]
        ret = mu * w

        # MV Model Variables

        risk1 = cv.quad_form(w, sigma)
        returns_1 = af.cov_returns(sigma) * 1000
        n1 = cv.Parameter(nonneg=True)
        n1.value = returns_1.shape[0]
        risk1_1 = cv.norm(returns_1 * w, "fro") / cv.sqrt(n1 - 1)

        # MAD Model Variables

        madmodel = False
        Y = cv.Variable((returns.shape[0], 1))
        u = np.matrix(np.ones((returns.shape[0], 1)) * mu)
        a = returns - u
        risk2 = cv.sum(Y) / n
        # madconstraints=[a*w >= -Y, a*w <= Y, Y >= 0]
        madconstraints = [a * w <= Y, Y >= 0]

        # Semi Variance Model Variables

        risk3 = cv.norm(Y, "fro") / cv.sqrt(n - 1)

        # CVaR Model Variables

        alpha1 = self.alpha
        VaR = cv.Variable(1)
        alpha = cv.Parameter(nonneg=True)
        alpha.value = alpha1
        X = returns * w
        Z = cv.Variable((returns.shape[0], 1))
        risk4 = VaR + 1 / (alpha * n) * cv.sum(Z)
        cvarconstraints = [Z >= 0, Z >= -X - VaR]

        # Worst Realization (Minimax) Model Variables

        M = cv.Variable(1)
        risk5 = M
        wrconstraints = [-X <= M]

        # Lower Partial Moment Variables

        lpmmodel = False
        lpm = cv.Variable((returns.shape[0], 1))
        lpmconstraints = [lpm >= 0]

        if obj == "Sharpe":
            lpmconstraints += [lpm >= rf0 * k - X]
        else:
            lpmconstraints += [lpm >= rf0 - X]

        # First Lower Partial Moment (Omega) Model Variables

        risk6 = cv.sum(lpm) / n

        # Second Lower Partial Moment (Sortino) Model Variables

        risk7 = cv.norm(lpm, "fro") / cv.sqrt(n - 1)

        # Drawdown Model Variables

        drawdown = False
        if obj == "Sharpe":
            X1 = k + nav * w
        else:
            X1 = 1 + nav * w

        U = cv.Variable((nav.shape[0] + 1, 1))
        ddconstraints = [U[1:] >= X1, U[1:] >= U[:-1]]

        if obj == "Sharpe":
            ddconstraints += [U[1:] >= k, U[0] == k]
        else:
            ddconstraints += [U[1:] >= 1, U[0] == 1]

        # Maximum Drawdown Model Variables

        MDD = cv.Variable(1)
        risk8 = MDD
        mddconstraints = [MDD >= U[1:] - X1]

        # Average Drawdown Model Variables

        risk9 = 1 / n * cv.sum(U[1:] - X1)

        # Conditional Drawdown Model Variables

        CDaR = cv.Variable(1)
        Zd = cv.Variable((nav.shape[0], 1))
        risk10 = CDaR + 1 / (alpha * n) * cv.sum(Zd)
        cdarconstraints = [Zd >= U[1:] - X1 - CDaR, Zd >= 0]

        # Tracking Error Model Variables

        c = self.benchweights
        if self.kindbench == True:
            bench = np.matrix(returns) * c
        else:
            bench = self.benchindex

        if obj == "Sharpe":
            TE = cv.norm(returns * w - bench * k, "fro") / cv.sqrt(n - 1)
        else:
            TE = cv.norm(returns * w - bench, "fro") / cv.sqrt(n - 1)

        # Problem aditional linear constraints

        if obj == "Sharpe":
            constraints = [
                cv.sum(w) == self.upperlng * k,
                k >= 0,
                mu * w - rf0 * k == 1,
            ]
            if self.sht == False:
                constraints += [w <= self.upperlng * k, w * 1000 >= 0]
            elif self.sht == True:
                constraints += [
                    w <= self.upperlng * k,
                    w >= -self.uppersht * k,
                    cv.sum(cv.neg(w)) <= self.uppersht * k,
                ]
        else:
            constraints = [cv.sum(w) == self.upperlng]
            if self.sht == False:
                constraints += [w <= self.upperlng, w * 1000 >= 0]
            elif self.sht == True:
                constraints += [
                    w <= self.upperlng,
                    w >= -self.uppersht,
                    cv.sum(cv.neg(w)) <= self.uppersht,
                ]

        if self.ainequality is not None and self.binequality is not None:
            A = np.matrix(self.ainequality)
            B = np.matrix(self.binequality)
            if obj == "Sharpe":
                constraints += [A * w - B * k >= 0]
            else:
                constraints += [A * w - B >= 0]

        # Turnover Constraints

        if obj == "Sharpe":
            if self.allowTO == True:
                constraints += [cv.abs(w - c * k) * 1000 <= self.turnover * k * 1000]
        else:
            if self.allowTO == True:
                constraints += [cv.abs(w - c) * 1000 <= self.turnover * 1000]

        # Tracking error Constraints

        if obj == "Sharpe":
            if self.allowTE == True:
                constraints += [TE <= self.TE * k]
        else:
            if self.allowTE == True:
                constraints += [TE <= self.TE]

        # Problem risk Constraints

        if self.upperdev is not None:
            if obj == "Sharpe":
                constraints += [risk1_1 <= self.upperdev * k]
            else:
                constraints += [risk1 <= self.upperdev ** 2]

        if self.uppermad is not None:
            if obj == "Sharpe":
                constraints += [risk2 <= self.uppermad * k / 2]
            else:
                constraints += [risk2 <= self.uppermad / 2]
            madmodel = True

        if self.uppersdev is not None:
            if obj == "Sharpe":
                constraints += [risk3 <= self.uppersdev * k]
            else:
                constraints += [risk3 <= self.uppersdev]
            madmodel = True

        if self.upperCVaR is not None:
            if obj == "Sharpe":
                constraints += [risk4 <= self.upperCVaR * k]
            else:
                constraints += [risk4 <= self.upperCVaR]
            constraints += cvarconstraints

        if self.upperwr is not None:
            if obj == "Sharpe":
                constraints += [-X <= self.upperwr * k]
            else:
                constraints += [-X <= self.upperwr]
            constraints += wrconstraints

        if self.upperflpm is not None:
            if obj == "Sharpe":
                constraints += [risk6 <= self.upperflpm * k]
            else:
                constraints += [risk6 <= self.upperflpm]
            lpmmodel = True

        if self.upperslpm is not None:
            if obj == "Sharpe":
                constraints += [risk7 <= self.upperslpm * k]
            else:
                constraints += [risk7 <= self.upperslpm]
            lpmmodel = True

        if self.uppermdd is not None:
            if obj == "Sharpe":
                constraints += [U[1:] - X1 <= self.uppermdd * k]
            else:
                constraints += [U[1:] - X1 <= self.uppermdd]
            constraints += mddconstraints
            drawdown = True

        if self.upperadd is not None:
            if obj == "Sharpe":
                constraints += [risk9 <= self.upperadd * k]
            else:
                constraints += [risk9 <= self.upperadd]
            drawdown = True

        if self.upperCDaR is not None:
            if obj == "Sharpe":
                constraints += [risk10 <= self.upperCDaR * k]
            else:
                constraints += [risk10 <= self.upperCDaR]
            constraints += cdarconstraints
            drawdown = True

        # Defining risk function

        if rm == "MV":
            if model != "Classic":
                risk = risk1_1
            elif model == "Classic":
                risk = risk1
        elif rm == "MAD":
            risk = risk2
            madmodel = True
        elif rm == "MSV":
            risk = risk3
            madmodel = True
        elif rm == "CVaR":
            risk = risk4
            if self.upperCVaR is None:
                constraints += cvarconstraints
        elif rm == "WR":
            risk = risk5
            if self.upperwr is None:
                constraints += wrconstraints
        elif rm == "FLPM":
            risk = risk6
            lpmmodel = True
        elif rm == "SLPM":
            risk = risk7
            lpmmodel = True
        elif rm == "MDD":
            risk = risk8
            drawdown = True
            if self.uppermdd is None:
                constraints += mddconstraints
        elif rm == "ADD":
            risk = risk9
            drawdown = True
        elif rm == "CDaR":
            risk = risk10
            drawdown = True
            if self.upperCDaR is None:
                constraints += cdarconstraints

        if madmodel == True:
            constraints += madconstraints
        if lpmmodel == True:
            constraints += lpmconstraints
        if drawdown == True:
            constraints += ddconstraints

        # Frontier Variables

        portafolio = {}

        for i in self.assetslist:
            portafolio.update({i: []})

        # Optimization Process

        # Defining solvers
        solvers = [cv.ECOS, cv.SCS, cv.OSQP, cv.CVXOPT, cv.GLPK]

        # Defining objective function
        if obj == "Sharpe":
            if rm != "Classic":
                objective = cv.Minimize(risk)
            elif rm == "Classic":
                objective = cv.Minimize(risk * 1000)
        elif obj == "MinRisk":
            objective = cv.Minimize(risk)
        elif obj == "Utility":
            objective = cv.Maximize(ret - l * risk)
        elif obj == "MaxRet":
            objective = cv.Maximize(ret)

        try:
            prob = cv.Problem(objective, constraints)
            for solver in solvers:
                try:
                    prob.solve(
                        solver=solver, parallel=True, max_iters=2000, abstol=1e-10
                    )
                except:
                    pass
                if w.value is not None:
                    break

            if obj == "Sharpe":
                weights = np.matrix(w.value / k.value).T
            else:
                weights = np.matrix(w.value).T

            if self.sht == False:
                weights = np.abs(weights) / np.sum(np.abs(weights))

            for j in self.assetslist:
                portafolio[j].append(weights[0, self.assetslist.index(j)])

        except:
            pass

        optimum = pd.DataFrame(portafolio, index=["weights"], dtype=np.float64).T

        return optimum
コード例 #7
0
ファイル: Portfolio.py プロジェクト: fagan2888/Riskfolio-Lib
    def blacklitterman_stats(
        self,
        P,
        Q,
        rf=0,
        w=None,
        delta=None,
        eq=True,
        method_mu="hist",
        method_cov="hist",
        **kwargs
    ):
        r"""
        Calculate the inputs that will be use by the optimization method when 
        we select the input model='BL'.
        
        Parameters
        ----------
        P : DataFrame of shape (n_views, n_assets)
            Analyst's views matrix, can be relative or absolute.
        Q: DataFrame of shape (n_views, 1)
            Expected returns of analyst's views.    
        delta: float
            Risk aversion factor. The default value is 1.      
        rf: scalar, optional
            Risk free rate. The default is 0.
        w : DataFrame of shape (n_assets, 1)
            Weights matrix, where n_assets is the number of assets.
            The default is None.
        eq: bool, optional
            Indicates if use equilibrum or historical excess returns. 
            The default is True.
        **kwargs : dict
            Other variables related to the mean and covariance estimation.
        
        See Also
        --------
        riskfolio.ParamsEstimation.black_litterman

        """
        X = self.returns
        if w is None:
            w = self.benchweights

        if delta is None:
            a = np.matrix(self.mu) * np.matrix(w)
            delta = (a - rf) / (np.matrix(w).T * np.matrix(self.cov) * np.matrix(w))
            delta = delta.item()

        mu, cov, w = pe.black_litterman(
            X=X,
            w=w,
            P=P,
            Q=Q,
            delta=delta,
            rf=rf,
            eq=eq,
            method_mu=method_mu,
            method_cov=method_cov,
            **kwargs
        )
        self.mu_bl = mu
        self.cov_bl = cov

        value = af.is_pos_def(self.cov_bl, threshold=1e-8)
        if value == False:
            print("You must convert self.cov_bl to a positive definite matrix")
コード例 #8
0
    def optimization(
        self,
        model="HRP",
        correlation="pearson",
        rm="MV",
        rf=0,
        linkage="single",
        k=None,
        max_k=10,
        leaf_order=True,
    ):
        r"""
        This method calculates the optimal portfolio according to the
        optimization model selected by the user.
        
        Parameters
        ----------
        model : str can be {'HRP' or 'HERC'}
            The hierarchical cluster portfolio model used for optimize the
            portfolio. The default is 'HRP'. Posible values are:

            - 'HRP': Hierarchical Risk Parity.
            - 'HERC': Hierarchical Equal Risk Contribution.

        correlation : str can be {'pearson', 'spearman' or 'distance'}.
            The correlation matrix used for create the clusters.
            The default is 'pearson'. Posible values are:

            - 'pearson': pearson correlation matrix.
            - 'spearman': spearman correlation matrix.
            - 'abs_pearson': absolute value pearson correlation matrix.
            - 'abs_spearman': absolute value spearman correlation matrix.
            - 'distance': distance correlation matrix.

        rm : str, optional
            The risk measure used to optimze the portfolio.
            The default is 'MV'. Posible values are:
            
            - 'vol': Standard Deviation.
            - 'MV': Variance.
            - 'MAD': Mean Absolute Deviation.
            - 'MSV': Semi Standard Deviation.
            - 'FLPM': First Lower Partial Moment (Omega Ratio).
            - 'SLPM': Second Lower Partial Moment (Sortino Ratio).
            - 'VaR': Value at Risk.
            - 'CVaR': Conditional Value at Risk.
            - 'EVaR': Entropic Value at Risk.
            - 'WR': Worst Realization (Minimax)
            - 'MDD': Maximum Drawdown of uncompounded cumulative returns (Calmar Ratio).
            - 'ADD': Average Drawdown of uncompounded cumulative returns.
            - 'DaR': Drawdown at Risk of uncompounded cumulative returns.
            - 'CDaR': Conditional Drawdown at Risk of uncompounded cumulative returns.
            - 'EDaR': Entropic Drawdown at Risk of uncompounded cumulative returns.
            - 'UCI': Ulcer Index of uncompounded cumulative returns.
            - 'MDD_Rel': Maximum Drawdown of compounded cumulative returns (Calmar Ratio).
            - 'ADD_Rel': Average Drawdown of compounded cumulative returns.
            - 'DaR_Rel': Drawdown at Risk of compounded cumulative returns.
            - 'CDaR_Rel': Conditional Drawdown at Risk of compounded cumulative returns.
            - 'EDaR_Rel': Entropic Drawdown at Risk of compounded cumulative returns.
            - 'UCI_Rel': Ulcer Index of compounded cumulative returns.
                
        rf : float, optional
            Risk free rate, must be in the same period of assets returns.
            The default is 0.
        linkage : string, optional
            Linkage method of hierarchical clustering, see `linkage <https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html?highlight=linkage#scipy.cluster.hierarchy.linkage>`_ for more details.
            The default is 'single'. Posible values are:

            - 'single'.
            - 'complete'.
            - 'average'.
            - 'weighted'.
            - 'centroid'.
            - 'median'.
            - 'ward'.
        
        k : int, optional
            Number of clusters. This value is took instead of the optimal number
            of clusters calculated with the two difference gap statistic.
            The default is None.
        max_k : int, optional
            Max number of clusters used by the two difference gap statistic
            to find the optimal number of clusters. The default is 10.
        
        Returns
        -------
        w : DataFrame
            The weights of optimal portfolio.

        """

        # Correlation matrix from covariance matrix
        self.cov = self.returns.cov()
        if correlation in {"pearson", "spearman"}:
            self.corr = self.returns.corr(method=correlation)
        if correlation in {"abs_pearson", "abs_spearman"}:
            self.corr = np.abs(self.returns.corr(method=correlation[4:]))
        elif correlation == "distance":
            self.corr = af.dcorr_matrix(self.returns)

        # Step-1: Tree clustering
        if model == "HRP":
            self.clusters = self._hierarchical_clustering_hrp(
                linkage, leaf_order=leaf_order)
        elif model == "HERC":
            self.clusters, self.k = self._hierarchical_clustering_herc(
                linkage, max_k, leaf_order=leaf_order)
            if k is not None:
                self.k = int(k)

        # Step-2: Seriation (Quasi-Diagnalization)
        self.sort_order = self._seriation(self.clusters)
        asset_order = self.assetslist
        asset_order[:] = [self.assetslist[i] for i in self.sort_order]
        self.asset_order = asset_order
        self.corr_sorted = self.corr.reindex(index=self.asset_order,
                                             columns=self.asset_order)

        # Step-3: Recursive bisection
        if model == "HRP":
            weights = self._recursive_bisection(self.sort_order, rm=rm, rf=rf)
        elif model == "HERC":
            weights = self._hierarchical_recursive_bisection(self.clusters,
                                                             rm=rm,
                                                             rf=rf,
                                                             linkage=linkage)

        weights = weights.loc[self.assetslist].to_frame()
        weights.columns = ["weights"]

        return weights
コード例 #9
0
def bootstrapping(X, kind='stationary', q=0.05, n_sim=3000, window=3, seed=0):
    r"""
    Estimates the uncertainty sets of mean and covariance matrix through the selected
    bootstrapping method.
    
    Parameters
    ----------
    X : DataFrame of shape (n_samples, n_features)
        Features matrix, where n_samples is the number of samples and 
        n_features is the number of features.    
    kind : str
        The bootstrapping method. The default value is 'stationary'. Posible values are:
        
        - 'stationary': stationary bootstrapping method, see `StationaryBootstrap <https://bashtage.github.io/arch/bootstrap/generated/arch.bootstrap.StationaryBootstrap.html#arch.bootstrap.StationaryBootstrap>`_ for more details.
        - 'circular': circular bootstrapping method, see `CircularBlockBootstrap <https://bashtage.github.io/arch/bootstrap/generated/arch.bootstrap.CircularBlockBootstrap.html#arch.bootstrap.CircularBlockBootstrap>`_ for more details.
        - 'moving': moving bootstrapping method, see `MovingBlockBootstrap <https://bashtage.github.io/arch/bootstrap/generated/arch.bootstrap.MovingBlockBootstrap.html#arch.bootstrap.MovingBlockBootstrap>`_ for more details.
    q : scalar
        Significance level of the selected bootstrapping method.
        The default is 0.05.
    n_sim : scalar
        Number of simulations of the bootstrapping method.
        The default is 3000.
    window:
        Block size of the bootstrapping method. Must be greather than 1
        and lower than the n_samples - n_features + 1
        The default is 3.  
    seed:
        Seed used to generate random numbers for bootstrapping method.
        The default is 0. 
    
    Returns
    -------
    mu_l : DataFrame    
        The q/2 percentile of mean vector obtained through the selected bootstrapping method.
    mu_u : DataFrame
        The 1-q/2 percentile of mean vector obtained through the selected bootstrapping method.
    cov_l : DataFrame
        The q/2 percentile of covariance matrix obtained through the selected bootstrapping method.
    cov_u : DataFrame
        The 1-q/2 percentile of covariance matrix obtained through the selected bootstrapping method.
    cov_mu : DataFrame
        The covariance matrix of estimation errors of mean vector obtained through the selected bootstrapping method.
        We take the diagonal of this matrix following :cite:`b-fabozzi2007robust`.
        
    Raises
    ------
    ValueError
        When the value cannot be calculated.
        
    """

    if not isinstance(X, pd.DataFrame):
        raise ValueError("X must be a DataFrame")

    if window >= X.shape[0] - window + 1:
        raise ValueError("block must be lower than  n_samples - window + 1")
    elif window <= 1:
        raise ValueError("block must be greather than 1")

    rs = np.random.RandomState(seed)

    cols = X.columns.tolist()
    m = len(cols)
    mus = np.zeros((n_sim, 1, m))
    covs = np.zeros((n_sim, m, m))

    if kind == 'stationary':
        gen = bs.StationaryBootstrap(window, X, random_state=rs)
    elif kind == 'circular':
        gen = bs.CircularBlockBootstrap(window, X, random_state=rs)
    elif kind == 'moving':
        gen = bs.MovingBlockBootstrap(window, X, random_state=rs)
    else:
        raise ValueError(
            "kind only can be 'stationary', 'circular' or 'moving'")

    i = 0
    for data in gen.bootstrap(n_sim):
        A = data[0][0]
        mus[i] = A.mean().to_numpy().reshape(1, m)
        covs[i] = A.cov().to_numpy()
        i += 1

    mu_l = np.percentile(mus, q / 2 * 100, axis=0, keepdims=True).reshape(1, m)
    mu_u = np.percentile(mus, 100 - q / 2 * 100, axis=0,
                         keepdims=True).reshape(1, m)

    cov_l = np.percentile(covs, q / 2 * 100, axis=0,
                          keepdims=True).reshape(m, m)
    cov_u = np.percentile(covs, 100 - q / 2 * 100, axis=0,
                          keepdims=True).reshape(m, m)

    cov_mu = mus.reshape(n_sim, m) - X.mean().to_numpy().reshape(1, m)
    cov_mu = np.cov(cov_mu.T)

    mu_l = pd.DataFrame(mu_l, index=[0], columns=cols)
    mu_u = pd.DataFrame(mu_u, index=[0], columns=cols)

    cov_l = pd.DataFrame(cov_l, index=cols, columns=cols)
    cov_u = pd.DataFrame(cov_u, index=cols, columns=cols)

    cov_mu = np.diag(np.diag(cov_mu))
    cov_mu = pd.DataFrame(cov_mu, index=cols, columns=cols)

    if au.is_pos_def(cov_l) == False:
        cov_l = au.cov_fix(cov_l, method="clipped", threshold=1e-3)

    if au.is_pos_def(cov_u) == False:
        cov_u = au.cov_fix(cov_u, method="clipped", threshold=1e-3)

    return mu_l, mu_u, cov_l, cov_u, cov_mu
コード例 #10
0
    def rp_optimization(self,
                        model="Classic",
                        rm="MV",
                        rf=0,
                        b=None,
                        hist=True):
        r"""
        This method that calculates the risk parity portfolio according to the
        optimization model selected by the user. The general problem that
        solves is:
        
        .. math::
            \begin{align}
            &\underset{w}{\min} & & R(w)\\
            &\text{s.t.} & & b \log(w) \geq c\\
            & & & w \geq 0 \\
            \end{align}
        
        Where:
            
        :math:`R(w)` is the risk measure.
    
        :math:`b` is a vector of risk constraints.
        
        Parameters
        ----------
        model : str can be 'Classic' or 'FM'
            The model used for optimize the portfolio.
            The default is 'Classic'. Posible values are:

            - 'Classic': use estimates of expected return vector and covariance matrix that depends on historical data.
            - 'FM': use estimates of expected return vector and covariance matrix based on a Risk Factor model specified by the user.
            
        rm : str, optional
            The risk measure used to optimze the portfolio.
            The default is 'MV'. Posible values are:
            
            - 'MV': Standard Deviation.
            - 'MAD': Mean Absolute Deviation.
            - 'MSV': Semi Standard Deviation.
            - 'FLPM': First Lower Partial Moment (Omega Ratio).
            - 'SLPM': Second Lower Partial Moment (Sortino Ratio).
            - 'CVaR': Conditional Value at Risk.
            - 'CDaR': Conditional Drawdown at Risk of uncompounded returns.

        rf : float, optional
            Risk free rate, must be in the same period of assets returns.
            Used for 'FLPM' and 'SLPM'.
            The default is 0.                
        b : float, optional
            The vector of risk constraints per asset.
            The default is 1/n (number of assets).
        hist : bool, optional
            Indicate if uses historical or factor estimation of returns to 
            calculate risk measures that depends on scenarios (All except
            'MV' risk measure). The default is True.

        Returns
        -------
        w : DataFrame
            The weights of optimum portfolio.

        """

        # General model Variables

        mu = None
        sigma = None
        returns = None
        if model == "Classic":
            mu = np.array(self.mu, ndmin=2)
            sigma = np.array(self.cov, ndmin=2)
            returns = np.array(self.returns, ndmin=2)
            nav = np.array(self.nav, ndmin=2)
        elif model == "FM":
            mu = np.array(self.mu_fm, ndmin=2)
            if hist == False:
                sigma = np.array(self.cov_fm, ndmin=2)
                returns = np.array(self.returns_fm, ndmin=2)
                nav = np.array(self.nav_fm, ndmin=2)
            elif hist == True:
                sigma = np.array(self.cov, ndmin=2)
                returns = np.array(self.returns, ndmin=2)
                nav = np.array(self.nav, ndmin=2)

        # General Model Variables

        if b is None:
            b = np.ones((1, mu.shape[1]))
            b = b / mu.shape[1]

        returns = np.array(returns, ndmin=2)
        w = cv.Variable((mu.shape[1], 1))
        rf0 = rf
        n = returns.shape[0]

        # MV Model Variables

        risk1 = cv.quad_form(w, sigma)
        returns_1 = af.cov_returns(sigma) * 1000
        n1 = returns_1.shape[0]
        risk1_1 = cv.norm(returns_1 @ w, "fro") / cv.sqrt(n1 - 1)

        # MAD Model Variables

        Y = cv.Variable((returns.shape[0], 1))
        u = np.ones((returns.shape[0], 1)) * mu
        a = returns - u
        risk2 = cv.sum(Y) / n
        # madconstraints=[a*w >= -Y, a*w <= Y, Y >= 0]
        madconstraints = [a @ w <= Y, Y >= 0]

        # Semi Variance Model Variables

        risk3 = cv.norm(Y, "fro") / cv.sqrt(n - 1)

        # CVaR Model Variables

        alpha1 = self.alpha
        VaR = cv.Variable((1, 1))
        alpha = alpha1
        X = returns @ w
        Z = cv.Variable((returns.shape[0], 1))
        risk4 = VaR + 1 / (alpha * n) * cv.sum(Z)
        cvarconstraints = [Z >= 0, Z >= -X - VaR]

        # Lower Partial Moment Variables

        lpm = cv.Variable((returns.shape[0], 1))
        lpmconstraints = [lpm >= 0, lpm >= rf0 - X]

        # First Lower Partial Moment (Omega) Model Variables

        risk6 = cv.sum(lpm) / n

        # Second Lower Partial Moment (Sortino) Model Variables

        risk7 = cv.norm(lpm, "fro") / cv.sqrt(n - 1)

        # Drawdown Model Variables

        X1 = 1 + nav @ w
        U = cv.Variable((nav.shape[0] + 1, 1))
        ddconstraints = [
            U[1:] * 1000 >= X1 * 1000,
            U[1:] * 1000 >= U[:-1] * 1000,
            U[1:] * 1000 >= 1 * 1000,
            U[0] * 1000 == 1 * 1000,
        ]

        # Conditional Drawdown Model Variables

        CDaR = cv.Variable((1, 1))
        Zd = cv.Variable((nav.shape[0], 1))
        risk10 = CDaR + 1 / (alpha * n) * cv.sum(Zd)
        cdarconstraints = [
            Zd * 1000 >= U[1:] * 1000 - X1 * 1000 - CDaR * 1000,
            Zd * 1000 >= 0,
        ]

        # Defining risk function

        constraints = []

        if rm == "MV":
            if model != "Classic":
                risk = risk1_1
            elif model == "Classic":
                risk = risk1
        elif rm == "MAD":
            risk = risk2
            constraints += madconstraints
        elif rm == "MSV":
            risk = risk3
            constraints += madconstraints
        elif rm == "CVaR":
            risk = risk4
            constraints += cvarconstraints
        elif rm == "FLPM":
            risk = risk6
            constraints += lpmconstraints
        elif rm == "SLPM":
            risk = risk7
            constraints += lpmconstraints
        elif rm == "CDaR":
            risk = risk10
            constraints += ddconstraints
            constraints += cdarconstraints

        # Frontier Variables

        portafolio = {}

        for i in self.assetslist:
            portafolio.update({i: []})

        # Optimization Process

        # Defining solvers
        solvers = [cv.ECOS, cv.SCS, cv.OSQP, cv.CVXOPT]
        sol_params = {
            cv.ECOS: {
                "max_iters": 2000,
                "abstol": 1e-10
            },
            cv.SCS: {
                "max_iters": 2500,
                "eps": 1e-10
            },
            cv.OSQP: {
                "max_iter": 10000,
                "eps_abs": 1e-10
            },
            cv.CVXOPT: {
                "max_iters": 2000,
                "abstol": 1e-10
            },
        }

        # Defining objective function

        objective = cv.Minimize(risk * 1000)

        constraints += [b @ cv.log(w) * 1000 >= 1 * 1000, w * 1000 >= 0]

        try:
            prob = cv.Problem(objective, constraints)
            for solver in solvers:
                try:
                    prob.solve(solver=solver, **sol_params[solver])
                except:
                    pass
                if w.value is not None:
                    break

            weights = np.array(w.value, ndmin=2).T
            weights = np.abs(weights) / np.sum(np.abs(weights))

            for j in self.assetslist:
                portafolio[j].append(weights[0, self.assetslist.index(j)])

        except:
            pass

        rp_optimum = pd.DataFrame(portafolio,
                                  index=["weights"],
                                  dtype=np.float64).T

        return rp_optimum