コード例 #1
0
    def __init__(self, cm: "metrics.ConfusionMatrix" = None):

        self.cm = metrics.ConfusionMatrix() if cm is None else cm
        self.accuracy = metrics.Accuracy(cm=self.cm)
        self.kappa = metrics.CohenKappa(cm=self.cm)
        self.kappa_m = metrics.KappaM(cm=self.cm)
        self.kappa_t = metrics.KappaT(cm=self.cm)
        self.recall = metrics.Recall(cm=self.cm)
        self.micro_recall = metrics.MicroRecall(cm=self.cm)
        self.macro_recall = metrics.MacroRecall(cm=self.cm)
        self.precision = metrics.Precision(cm=self.cm)
        self.micro_precision = metrics.MicroPrecision(cm=self.cm)
        self.macro_precision = metrics.MacroPrecision(cm=self.cm)
        self.f1 = metrics.F1(cm=self.cm)
        self.micro_f1 = metrics.MicroF1(cm=self.cm)
        self.macro_f1 = metrics.MacroF1(cm=self.cm)
        self.geometric_mean = metrics.GeometricMean(cm=self.cm)
コード例 #2
0
 def __init__(self, step, name):
     self.name = name
     self.optimizer = SynchronousSGD(0.01, name, None)
     self.model = compose.Pipeline(
         preprocessing.StandardScaler(),
         linear_model.LogisticRegression(self.optimizer))
     self.metrics = [
         metrics.Accuracy(),
         metrics.MAE(),
         metrics.RMSE(),
         metrics.Precision(),
         metrics.Recall()
     ]
     self.count = 0
     if step is None:
         self.step = 50
     else:
         self.step = int(step)
コード例 #3
0
from river import compose
from river import preprocessing
from river import linear_model
from river import metrics
from river import datasets
from river import optim

optimizer = optim.SGD(0.1)
model = compose.Pipeline(preprocessing.StandardScaler(),
                         linear_model.LogisticRegression(optimizer))

metric = metrics.ROCAUC()
precision = metrics.Precision()

for x, y in datasets.Phishing():
    y_pred = model.predict_proba_one(x)
    model.learn_one(x, y)
    metric.update(y, y_pred)
    precision.update(y, y_pred)

print(metric)
print(precision)
コード例 #4
0
ファイル: test_.py プロジェクト: xianghu-xiaokachekkk/river
                np.random.dirichlet(np.ones(3)).tolist() for _ in range(n)
            ]
        yield y_true, y_pred, sample_weights

    if isinstance(metric, base.RegressionMetric):
        yield ([random.random() for _ in range(n)],
               [random.random() for _ in range(n)], sample_weights)


def partial(f, **kwargs):
    return functools.update_wrapper(functools.partial(f, **kwargs), f)


TEST_CASES = [
    (metrics.Accuracy(), sk_metrics.accuracy_score),
    (metrics.Precision(), sk_metrics.precision_score),
    (metrics.MacroPrecision(),
     partial(sk_metrics.precision_score, average='macro')),
    (metrics.MicroPrecision(),
     partial(sk_metrics.precision_score, average='micro')),
    (metrics.WeightedPrecision(),
     partial(sk_metrics.precision_score, average='weighted')),
    (metrics.Recall(), sk_metrics.recall_score),
    (metrics.MacroRecall(), partial(sk_metrics.recall_score, average='macro')),
    (metrics.MicroRecall(), partial(sk_metrics.recall_score, average='micro')),
    (metrics.WeightedRecall(),
     partial(sk_metrics.recall_score, average='weighted')),
    (metrics.FBeta(beta=.5), partial(sk_metrics.fbeta_score, beta=.5)),
    (metrics.MacroFBeta(beta=.5),
     partial(sk_metrics.fbeta_score, beta=.5, average='macro')),
    (metrics.MicroFBeta(beta=.5),
コード例 #5
0
ファイル: test_.py プロジェクト: renatacgcastanha/river
    if isinstance(metric, base.RegressionMetric):
        yield (
            [random.random() for _ in range(n)],
            [random.random() for _ in range(n)],
            sample_weights,
        )


def partial(f, **kwargs):
    return functools.update_wrapper(functools.partial(f, **kwargs), f)


TEST_CASES = [
    (metrics.Accuracy(), sk_metrics.accuracy_score),
    (metrics.Precision(), partial(sk_metrics.precision_score,
                                  zero_division=0)),
    (
        metrics.MacroPrecision(),
        partial(sk_metrics.precision_score, average="macro", zero_division=0),
    ),
    (
        metrics.MicroPrecision(),
        partial(sk_metrics.precision_score, average="micro", zero_division=0),
    ),
    (
        metrics.WeightedPrecision(),
        partial(sk_metrics.precision_score,
                average="weighted",
                zero_division=0),
    ),
コード例 #6
0
ファイル: fbeta.py プロジェクト: Leo-VK/creme
 def __init__(self, beta: float, cm=None, pos_val=True):
     super().__init__(cm, pos_val)
     self.beta = beta
     self.precision = metrics.Precision(self.cm, self.pos_val)
     self.recall = metrics.Recall(self.cm, self.pos_val)