コード例 #1
0
from rl_coach.agents.ddqn_agent import DDQNAgentParameters
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
from rl_coach.environments.environment import SingleLevelSelection
from rl_coach.environments.gym_environment import Atari, atari_deterministic_v4, atari_schedule
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplayParameters
from rl_coach.schedules import LinearSchedule

#########
# Agent #
#########
agent_params = DDQNAgentParameters()
agent_params.network_wrappers['main'].learning_rate = 0.00025 / 4
agent_params.memory = PrioritizedExperienceReplayParameters()
agent_params.memory.beta = LinearSchedule(
    0.4, 1, 12500000)  # 12.5M training iterations = 50M steps = 200M frames

###############
# Environment #
###############
env_params = Atari(level=SingleLevelSelection(atari_deterministic_v4))

########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.trace_test_levels = [
    'breakout', 'pong', 'space_invaders'
]

graph_manager = BasicRLGraphManager(
コード例 #2
0
####################
# Graph Scheduling #
####################

schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(50)
schedule_params.evaluation_steps = EnvironmentEpisodes(3)
schedule_params.heatup_steps = EnvironmentSteps(1000)


#########
# Agent #
#########
agent_params = DDQNAgentParameters()
agent_params.memory.max_size = (MemoryGranularity.Transitions, 5000)
agent_params.network_wrappers['main'].learning_rate = 0.00025
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(1000)
agent_params.exploration.epsilon_schedule = LinearSchedule(0.5, 0.01, 50000)
agent_params.exploration.evaluation_epsilon = 0
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1)
agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False
agent_params.network_wrappers['main'].heads_parameters = [DuelingQHeadParameters()]

###############
# Environment #
###############
env_params = DoomEnvironmentParameters()
env_params.level = 'basic'
コード例 #3
0
num_output_head_copies = 20

####################
# Graph Scheduling #
####################

schedule_params = ScheduleParameters()
schedule_params.improve_steps = EnvironmentEpisodes(2000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10)
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
schedule_params.heatup_steps = EnvironmentSteps(N)

####################
# DQN Agent Params #
####################
agent_params = DDQNAgentParameters()
agent_params.network_wrappers['main'].learning_rate = 0.00025
agent_params.network_wrappers['main'].heads_parameters = [
    DuelingQHeadParameters()
]
agent_params.memory.max_size = (MemoryGranularity.Transitions, 1000000)
agent_params.algorithm.discount = 0.99
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(4)
agent_params.exploration.epsilon_schedule = LinearSchedule(
    1, 0.1, (N + 7) * 2000)
agent_params.input_filter = NoInputFilter()
agent_params.output_filter = NoOutputFilter()

###############
# Environment #
###############
コード例 #4
0
# NN configuration
agent_params.network_wrappers['main'].learning_rate = 0.0001
agent_params.network_wrappers['main'].replace_mse_with_huber_loss = False
agent_params.network_wrappers['main'].softmax_temperature = 0.2

# ER size
agent_params.memory = EpisodicExperienceReplayParameters()
# DATATSET_PATH = 'acrobot.csv'
# agent_params.memory.load_memory_from_file_path = CsvDataset(DATATSET_PATH, True)

# E-Greedy schedule
agent_params.exploration.epsilon_schedule = LinearSchedule(0, 0, 10000)
agent_params.exploration.evaluation_epsilon = 0

# Experience Generating Agent parameters
experience_generating_agent_params = DDQNAgentParameters()

# schedule parameters
experience_generating_schedule_params = ScheduleParameters()
experience_generating_schedule_params.heatup_steps = EnvironmentSteps(1000)
experience_generating_schedule_params.improve_steps = TrainingSteps(
    DATASET_SIZE - experience_generating_schedule_params.heatup_steps.num_steps)
experience_generating_schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(10)
experience_generating_schedule_params.evaluation_steps = EnvironmentEpisodes(1)

# DQN params
experience_generating_agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(100)
experience_generating_agent_params.algorithm.discount = 0.99
experience_generating_agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1)

# NN configuration
コード例 #5
0
ファイル: CARLA_Dueling_DDQN.py プロジェクト: mdavala/coach
from rl_coach.graph_managers.graph_manager import ScheduleParameters

####################
# Graph Scheduling #
####################

schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(20)
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
schedule_params.heatup_steps = EnvironmentSteps(1000)

#########
# Agent #
#########
agent_params = DDQNAgentParameters()
agent_params.network_wrappers['main'].learning_rate = 0.00025
agent_params.network_wrappers['main'].heads_parameters = [DuelingQHeadParameters()]
agent_params.network_wrappers['main'].middleware_parameters.scheme = MiddlewareScheme.Empty
agent_params.network_wrappers['main'].rescale_gradient_from_head_by_factor = [1/math.sqrt(2), 1/math.sqrt(2)]
agent_params.network_wrappers['main'].clip_gradients = 10
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(4)
agent_params.network_wrappers['main'].input_embedders_parameters['forward_camera'] = \
    agent_params.network_wrappers['main'].input_embedders_parameters.pop('observation')
agent_params.output_filter = OutputFilter()
agent_params.output_filter.add_action_filter('discretization', BoxDiscretization(5))

###############
# Environment #
###############
env_params = CarlaEnvironmentParameters()
from rl_coach.memories.memory import MemoryGranularity
from rl_coach.schedules import LinearSchedule

####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(50)
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
schedule_params.heatup_steps = EnvironmentSteps(50000)

#########
# Agent #
#########
agent_params = DDQNAgentParameters()

agent_params.network_wrappers['main'].learning_rate = 0.0001
agent_params.network_wrappers['main'].input_embedders_parameters = {
    "screen": InputEmbedderParameters(input_rescaling={'image': 3.0})
}
agent_params.network_wrappers['main'].heads_parameters = [
    DuelingQHeadParameters()
]
agent_params.memory.max_size = (MemoryGranularity.Transitions, 1000000)
# slave_agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(10000)
agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.1, 1000000)
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(4)
agent_params.output_filter = \
    OutputFilter(
        action_filters=OrderedDict([
####################
# Graph Scheduling #
####################

schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = TrainingSteps(1)
schedule_params.evaluation_steps = EnvironmentEpisodes(10)
schedule_params.heatup_steps = EnvironmentSteps(DATASET_SIZE)

#########
# Agent #
#########
# TODO add a preset which uses a dataset to train a BatchRL graph. e.g. save a cartpole dataset in a csv format.
agent_params = DDQNAgentParameters()
agent_params.network_wrappers['main'].batch_size = 128

# DQN params
# agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(100)

# For making this become Fitted Q-Iteration we can keep the targets constant for the entire dataset size -
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = TrainingSteps(
    DATASET_SIZE / agent_params.network_wrappers['main'].batch_size)

agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(0)
agent_params.algorithm.discount = 0.98
# agent_params.algorithm.discount = 1.0

# NN configuration
agent_params.network_wrappers['main'].learning_rate = 0.0001
コード例 #8
0
ファイル: batch_rl.py プロジェクト: guyk1971/coach
def train_using_experience_agent(env_params, n_epochs, dataset_size):
    tf.reset_default_graph(
    )  # just to clean things up; only needed for the tutorial

    # Experience Generating Agent parameters
    experience_generating_agent_params = DDQNAgentParameters()
    # schedule parameters
    experience_generating_schedule_params = ScheduleParameters()
    experience_generating_schedule_params.heatup_steps = EnvironmentSteps(1000)
    experience_generating_schedule_params.improve_steps = TrainingSteps(
        dataset_size -
        experience_generating_schedule_params.heatup_steps.num_steps)
    experience_generating_schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(
        10)
    experience_generating_schedule_params.evaluation_steps = EnvironmentEpisodes(
        1)

    # DQN params
    experience_generating_agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(
        100)
    experience_generating_agent_params.algorithm.discount = 0.99
    experience_generating_agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(
        1)

    # NN configuration
    experience_generating_agent_params.network_wrappers[
        'main'].learning_rate = 0.0001
    experience_generating_agent_params.network_wrappers[
        'main'].batch_size = 128
    experience_generating_agent_params.network_wrappers[
        'main'].replace_mse_with_huber_loss = False
    experience_generating_agent_params.network_wrappers['main'].heads_parameters = \
        [QHeadParameters(output_bias_initializer=tf.constant_initializer(-100))]
    # experience_generating_agent_params.network_wrappers['main'].heads_parameters = \
    #     [QHeadParameters(output_bias_initializer=tf.constant_initializer(0))]

    # ER size
    experience_generating_agent_params.memory = EpisodicExperienceReplayParameters(
    )
    experience_generating_agent_params.memory.max_size = \
        (MemoryGranularity.Transitions,
         experience_generating_schedule_params.heatup_steps.num_steps +
         experience_generating_schedule_params.improve_steps.num_steps)

    # E-Greedy schedule
    experience_generating_agent_params.exploration.epsilon_schedule = LinearSchedule(
        1.0, 0.01, DATASET_SIZE)
    experience_generating_agent_params.exploration.evaluation_epsilon = 0

    schedule_params = set_schedule_params(n_epochs, dataset_size)
    # set the agent params as before
    # agent_params = set_agent_params(DDQNAgentParameters)
    agent_params = set_agent_params(DDQNBCQAgentParameters)
    agent_params.algorithm.action_drop_method_parameters = NNImitationModelParameters(
    )

    # 50 epochs of training (the entire dataset is used each epoch)
    # schedule_params.improve_steps = TrainingSteps(50)

    graph_manager = BatchRLGraphManager(
        agent_params=agent_params,
        experience_generating_agent_params=experience_generating_agent_params,
        experience_generating_schedule_params=
        experience_generating_schedule_params,
        env_params=env_params,
        schedule_params=schedule_params,
        vis_params=VisualizationParameters(
            dump_signals_to_csv_every_x_episodes=1),
        reward_model_num_epochs=30,
        train_to_eval_ratio=0.5)
    graph_manager.create_graph(task_parameters)
    graph_manager.improve()
    return