def __init__(self): super().__init__( algorithm=SILAlgorithmParameters(), exploration= None, #TODO this should be different for continuous (ContinuousEntropyExploration) # and discrete (CategoricalExploration) action spaces. how to deal with that? memory=PrioritizedExperienceReplayParameters(), networks={"main": SILNetworkParameters()})
def __init__(self): super().__init__() self.algorithm = RainbowDQNAlgorithmParameters() # ParameterNoiseParameters is changing the network wrapper parameters. This line needs to be done first. self.network_wrappers = {"main": RainbowDQNNetworkParameters()} self.exploration = ParameterNoiseParameters(self) self.memory = PrioritizedExperienceReplayParameters()
def __init__(self): super().__init__() self.algorithm = RainbowDQNAlgorithmParameters() self.exploration = ParameterNoiseParameters(self) self.memory = PrioritizedExperienceReplayParameters() self.network_wrappers = {"main": RainbowDQNNetworkParameters()}
from rl_coach.agents.ddqn_agent import DDQNAgentParameters from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters from rl_coach.environments.environment import SingleLevelSelection from rl_coach.environments.gym_environment import Atari, atari_deterministic_v4, atari_schedule from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager from rl_coach.memories.non_episodic.prioritized_experience_replay import PrioritizedExperienceReplayParameters from rl_coach.schedules import LinearSchedule ######### # Agent # ######### agent_params = DDQNAgentParameters() agent_params.network_wrappers['main'].learning_rate = 0.00025 / 4 agent_params.memory = PrioritizedExperienceReplayParameters() agent_params.memory.beta = LinearSchedule( 0.4, 1, 12500000) # 12.5M training iterations = 50M steps = 200M frames ############### # Environment # ############### env_params = Atari(level=SingleLevelSelection(atari_deterministic_v4)) ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.trace_test_levels = [ 'breakout', 'pong', 'space_invaders' ] graph_manager = BasicRLGraphManager(