コード例 #1
0
    def test_reshape_with_batch_and_time_ranks_with_folding_and_explicit_unfolding(
            self):
        time_rank = 8
        in_space = FloatBox(shape=(2, 3),
                            add_batch_rank=True,
                            add_time_rank=True,
                            time_major=True)
        reshape_fold = ReShape(fold_time_rank=True, scope="fold-time-rank")
        reshape_unfold = ReShape(unfold_time_rank=time_rank,
                                 scope="unfold-time-rank",
                                 time_major=True)

        def custom_call(self_, inputs):
            folded = reshape_fold.call(inputs)
            unfolded = reshape_unfold.call(
                folded)  # no need for orig input here as unfolding is explicit
            return unfolded

        stack = Stack(reshape_fold,
                      reshape_unfold,
                      api_methods={("call", custom_call)})

        test = ComponentTest(component=stack,
                             input_spaces=dict(inputs=in_space))

        # seq-len=time_rank, batch-size=n
        inputs = in_space.sample(size=(time_rank, 12))

        test.test(("call", inputs), expected_outputs=inputs)
コード例 #2
0
    def test_reshape_with_batch_and_time_ranks_with_folding_and_unfolding_0D_shape(
            self):
        # Flip time and batch rank via folding, then unfolding.
        in_space = FloatBox(shape=(),
                            add_batch_rank=True,
                            add_time_rank=True,
                            time_major=True)
        reshape_fold = ReShape(fold_time_rank=True, scope="fold-time-rank")
        reshape_unfold = ReShape(unfold_time_rank=True,
                                 scope="unfold-time-rank",
                                 time_major=True)

        def custom_apply(self_, inputs):
            folded = reshape_fold.apply(inputs)
            unfolded = reshape_unfold.apply(folded, inputs)
            return unfolded

        stack = Stack(reshape_fold,
                      reshape_unfold,
                      api_methods={("apply", custom_apply)})

        test = ComponentTest(component=stack,
                             input_spaces=dict(inputs=in_space))

        # seq-len=16, batch-size=8
        inputs = in_space.sample(size=(16, 8))

        test.test(("apply", inputs), expected_outputs=inputs)
コード例 #3
0
    def test_reshape_with_batch_and_time_ranks_and_with_folding_and_unfolding(
            self):
        # Flip time and batch rank via folding, then unfolding.
        in_space = FloatBox(shape=(3, 2),
                            add_batch_rank=True,
                            add_time_rank=True,
                            time_major=False)
        reshape_fold = ReShape(fold_time_rank=True)
        reshape_unfold = ReShape(unfold_time_rank=True, time_major=False)

        def custom_call(self_, inputs):
            folded = reshape_fold.call(inputs)
            unfolded = reshape_unfold.call(folded, inputs)
            return unfolded

        stack = Stack(reshape_fold,
                      reshape_unfold,
                      api_methods={("call", custom_call)})

        test = ComponentTest(component=stack,
                             input_spaces=dict(inputs=in_space))

        # batch-size=4, seq-len=2
        inputs = in_space.sample(size=(4, 2))

        test.test(("call", inputs), expected_outputs=inputs)
コード例 #4
0
    def test_reshape_with_batch_vs_time_flipping_with_folding_and_unfolding(
            self):
        # Flip time and batch rank via folding, then unfolding.
        in_space = FloatBox(shape=(3, 2),
                            add_batch_rank=True,
                            add_time_rank=True,
                            time_major=False)
        reshape_fold = ReShape(fold_time_rank=True, scope="fold-time-rank")
        reshape_unfold = ReShape(unfold_time_rank=True,
                                 flip_batch_and_time_rank=True,
                                 scope="unfold-time-rank-with-flip",
                                 time_major=True)

        def custom_apply(self, inputs):
            folded = reshape_fold.apply(inputs)
            unfolded = reshape_unfold.apply(folded, inputs)
            return unfolded

        stack = Stack(reshape_fold,
                      reshape_unfold,
                      api_methods={("apply", custom_apply)})

        test = ComponentTest(component=stack,
                             input_spaces=dict(inputs=in_space))

        #test.test("reset")
        # batch-size=4, seq-len=2
        inputs = in_space.sample(size=(4, 2))
        # Flip the first two dimensions.
        expected = np.transpose(inputs, axes=(1, 0, 2, 3))

        test.test(("apply", inputs), expected_outputs=expected)
コード例 #5
0
    def test_reshape_with_time_rank(self):
        # Test with time-rank instead of batch-rank.
        in_space = FloatBox(shape=(4, ),
                            add_batch_rank=False,
                            add_time_rank=True)
        reshape = ReShape(new_shape=(2, 2))
        test = ComponentTest(component=reshape,
                             input_spaces=dict(preprocessing_inputs=in_space))

        test.test("reset")
        inputs = in_space.sample(size=3)
        expected = np.reshape(inputs, newshape=(3, 2, 2))
        test.test(("apply", inputs), expected_outputs=expected)
コード例 #6
0
    def test_reshape(self):
        reshape = ReShape(new_shape=(3, 2))
        test = ComponentTest(
            component=reshape,
            input_spaces=dict(
                inputs=FloatBox(shape=(6, ), add_batch_rank=True)))

        test.test("reset")
        # Batch=2
        inputs = np.array([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]])
        expected = np.array([[[1, 2], [3, 4], [5, 6]],
                             [[7, 8], [9, 10], [11, 12]]])
        test.test(("call", inputs), expected_outputs=expected)
コード例 #7
0
    def test_reshape_with_flatten_option_with_0D_shape(self):
        # Test flattening int with shape=().
        in_space = IntBox(3, shape=(), add_batch_rank=True)
        reshape = ReShape(flatten=True, flatten_categories=3)
        test = ComponentTest(component=reshape,
                             input_spaces=dict(preprocessing_inputs=in_space))

        test.test("reset")
        # Time-rank=5, Batch=2
        inputs = in_space.sample(size=4)
        # Expect a by-int-category one-hot flattening.
        expected = one_hot(inputs, depth=3)
        test.test(("apply", inputs), expected_outputs=expected)
コード例 #8
0
    def test_reshape_with_flatten_option_only_time_rank(self):
        # Test flattening while leaving batch and time rank as is.
        in_space = FloatBox(shape=(2, 3),
                            add_batch_rank=False,
                            add_time_rank=True)
        reshape = ReShape(flatten=True)
        test = ComponentTest(component=reshape,
                             input_spaces=dict(preprocessing_inputs=in_space))

        test.test("reset")
        # Time-rank=5, Batch=2
        inputs = in_space.sample(size=3)
        expected = np.reshape(inputs, newshape=(3, 6))
        test.test(("apply", inputs), expected_outputs=expected)
コード例 #9
0
    def test_reshape_with_batch_and_time_ranks_and_flattening(self):
        in_space = FloatBox(shape=(6, 4, 2),
                            add_batch_rank=True,
                            add_time_rank=True,
                            time_major=False)
        reshape = ReShape(flatten=True)
        test = ComponentTest(component=reshape,
                             input_spaces=dict(preprocessing_inputs=in_space))

        test.test("reset")
        # batch-size=1, seq-len=3
        inputs = in_space.sample(size=(1, 3))
        # Reshape without the first two ranks.
        expected = np.reshape(inputs, newshape=(1, 3, 48))
        test.test(("apply", inputs), expected_outputs=expected)
コード例 #10
0
    def test_reshape_with_time_and_batch_ranks_and_reshaping(self):
        in_space = FloatBox(shape=(5, 8),
                            add_batch_rank=True,
                            add_time_rank=True,
                            time_major=True)
        reshape = ReShape(new_shape=(4, 10))
        test = ComponentTest(component=reshape,
                             input_spaces=dict(preprocessing_inputs=in_space))

        test.test("reset")
        # seq-len=2, batch-size=4
        inputs = in_space.sample(size=(2, 4))
        # Reshape without the first two ranks.
        expected = np.reshape(inputs, newshape=(2, 4, 4, 10))
        test.test(("apply", inputs), expected_outputs=expected)
コード例 #11
0
    def test_reshape_with_flatten_option(self):
        # Test flattening while leaving batch and time rank as is.
        in_space = FloatBox(shape=(2, 3, 4),
                            add_batch_rank=True,
                            add_time_rank=True,
                            time_major=True)
        reshape = ReShape(flatten=True)
        test = ComponentTest(component=reshape,
                             input_spaces=dict(inputs=in_space))

        test.test("reset")
        # Time-rank=5, Batch=2
        inputs = in_space.sample(size=(5, 2))
        expected = np.reshape(inputs, newshape=(5, 2, 24))
        test.test(("call", inputs), expected_outputs=expected)
コード例 #12
0
    def test_reshape_with_time_rank_folding(self):
        # Fold time rank into batch rank.
        in_space = FloatBox(shape=(4, 4),
                            add_batch_rank=True,
                            add_time_rank=True,
                            time_major=True)
        reshape = ReShape(fold_time_rank=True)
        test = ComponentTest(component=reshape,
                             input_spaces=dict(preprocessing_inputs=in_space))

        test.test("reset")
        # seq-len=3, batch-size=2
        inputs = in_space.sample(size=(3, 2))
        expected = np.reshape(inputs, newshape=(6, 4, 4))
        test.test(("apply", inputs), expected_outputs=expected)
コード例 #13
0
    def test_reshape_with_flatten_option_with_categories(self):
        # Test flattening while leaving batch and time rank as is, but flattening out int categories.
        in_space = IntBox(2,
                          shape=(2, 3, 4),
                          add_batch_rank=True,
                          add_time_rank=True,
                          time_major=False)
        reshape = ReShape(flatten=True, flatten_categories=2)
        test = ComponentTest(component=reshape,
                             input_spaces=dict(preprocessing_inputs=in_space))

        test.test("reset")
        # Batch=3, time-rank=5
        inputs = in_space.sample(size=(3, 5))
        expected = np.reshape(one_hot(inputs, depth=2),
                              newshape=(3, 5, 48)).astype(dtype=np.float32)
        test.test(("apply", inputs), expected_outputs=expected)
コード例 #14
0
    def test_reshape_with_flatten_option_without_categories(self):
        # Test flattening while leaving batch and time rank as is.
        in_space = IntBox(3,
                          shape=(2, 3, 4),
                          add_batch_rank=True,
                          add_time_rank=True,
                          time_major=False)
        reshape = ReShape(flatten=True, flatten_categories=False)
        test = ComponentTest(component=reshape,
                             input_spaces=dict(inputs=in_space))

        test.test("reset")
        # Batch=3, time-rank=5
        inputs = in_space.sample(size=(3, 5))
        expected = np.reshape(inputs,
                              newshape=(3, 5, 24)).astype(dtype=np.float32)
        test.test(("call", inputs), expected_outputs=expected)
コード例 #15
0
    def test_reshape_python_with_time_rank_unfolding(self):
        # Unfold time rank from batch rank with given time-dimension (2 out of 8 -> batch will be 4 after unfolding).
        in_space = FloatBox(shape=(4, 4),
                            add_batch_rank=True,
                            add_time_rank=False)
        in_space_before_folding = FloatBox(shape=(4, 4),
                                           add_batch_rank=True,
                                           add_time_rank=True)
        reshape = ReShape(unfold_time_rank=True, backend="python")
        reshape.create_variables(
            dict(preprocessing_inputs=in_space,
                 input_before_time_rank_folding=in_space_before_folding))

        # seq-len=2, batch-size=4 -> unfold from 8.
        inputs = in_space.sample(size=8)
        inputs_before_folding = in_space_before_folding.sample(size=(4, 2))
        expected = np.reshape(inputs, newshape=(4, 2, 4, 4))
        out = reshape._graph_fn_apply(inputs, inputs_before_folding)

        recursive_assert_almost_equal(out, expected)
コード例 #16
0
    def test_reshape_with_batch_vs_time_flipping_and_flattening(self):
        # Flip time and batch rank AND reshape.
        in_space = FloatBox(shape=(6, 4, 2),
                            add_batch_rank=True,
                            add_time_rank=True,
                            time_major=False)
        # If reshaper has a different time-major as input space, we must set the flip_batch_and_time_rank flag.
        reshape = ReShape(time_major=True,
                          flip_batch_and_time_rank=True,
                          flatten=True)
        test = ComponentTest(component=reshape,
                             input_spaces=dict(preprocessing_inputs=in_space))

        test.test("reset")
        # batch-size=1, seq-len=3
        inputs = in_space.sample(size=(1, 3))
        # Flip the first two dimensions.
        expected = np.transpose(inputs, axes=(1, 0, 2, 3, 4))
        # Do the actual reshape (not touching the first two dimensions).
        expected = np.reshape(expected, newshape=(3, 1, 48))
        test.test(("apply", inputs), expected_outputs=expected)
コード例 #17
0
    def test_reshape_with_batch_vs_time_flipping_and_reshaping(self):
        # Flip time and batch rank AND reshape.
        in_space = FloatBox(shape=(5, 8),
                            add_batch_rank=True,
                            add_time_rank=True,
                            time_major=True)
        # If time_major of input Space and reshaper are different, we have to set the "flip"-flag.
        reshape = ReShape(time_major=False,
                          flip_batch_and_time_rank=True,
                          new_shape=(4, 10))
        test = ComponentTest(component=reshape,
                             input_spaces=dict(preprocessing_inputs=in_space))

        test.test("reset")
        # seq-len=2, batch-size=4
        inputs = in_space.sample(size=(2, 4))
        # Flip the first two dimensions.
        expected = np.transpose(inputs, axes=(1, 0, 2, 3))
        # Do the actual reshape (not touching the first two dimensions).
        expected = np.reshape(expected, newshape=(4, 2, 4, 10))
        test.test(("apply", inputs), expected_outputs=expected)
コード例 #18
0
    def test_split_graph_on_reshape_flatten(self):
        space = Dict.from_spec(dict(a=Tuple(FloatBox(shape=(1, 1, 2)),
                                            FloatBox(shape=(1, 2, 2))),
                                    b=FloatBox(shape=(2, 2, 3)),
                                    c=dict(type=float, shape=(2, )),
                                    d=IntBox(3)),
                               add_batch_rank=True)
        flatten = ReShape(flatten=True, flatten_categories={"d": 3})

        test = ComponentTest(component=flatten,
                             input_spaces=dict(preprocessing_inputs=space))

        input_ = dict(a=(np.array([[[[3.0, 5.0]]], [[[1.0, 5.2]]]]),
                         np.array([[[[3.1, 3.2], [3.3, 3.4]]],
                                   [[[3.5, 3.6], [3.7, 3.8]]]])),
                      b=np.array([[[[0.01, 0.02, 0.03], [0.04, 0.05, 0.06]],
                                   [[0.07, 0.08, 0.09], [0.10, 0.11, 0.12]]],
                                  [[[0.13, 0.14, 0.15], [0.16, 0.17, 0.18]],
                                   [[0.19, 0.20, 0.21], [0.22, 0.23, 0.24]]]]),
                      c=np.array([[0.1, 0.2], [0.3, 0.4]]),
                      d=np.array([2, 0]))
        expected = dict(
            a=(np.array([[3.0, 5.0], [1.0, 5.2]], dtype=np.float32),
               np.array([[3.1, 3.2, 3.3, 3.4], [3.5, 3.6, 3.7, 3.8]],
                        dtype=np.float32)),
            b=np.array([[
                0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10,
                0.11, 0.12
            ],
                        [
                            0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20,
                            0.21, 0.22, 0.23, 0.24
                        ]]),
            c=np.array([[0.1, 0.2], [0.3, 0.4]], dtype=np.float32),
            d=np.array([[0.0, 0.0, 1.0], [1.0, 0.0,
                                          0.0]])  # category (one-hot) flatten
        )
        test.test("reset")
        test.test(("apply", input_), expected_outputs=expected)
コード例 #19
0
    def test_reshape_with_time_rank_unfolding(self):
        # Unfold time rank from batch rank with given time-dimension (2 out of 8 -> batch will be 4 after unfolding).
        in_space = FloatBox(shape=(4, 4),
                            add_batch_rank=True,
                            add_time_rank=False)
        in_space_before_folding = FloatBox(shape=(4, 4),
                                           add_batch_rank=True,
                                           add_time_rank=True)
        reshape = ReShape(unfold_time_rank=True)
        test = ComponentTest(
            component=reshape,
            input_spaces=dict(
                preprocessing_inputs=in_space,
                input_before_time_rank_folding=in_space_before_folding))

        test.test("reset")
        # seq-len=2, batch-size=4 -> unfold from 8.
        inputs = in_space.sample(size=8)
        inputs_before_folding = in_space_before_folding.sample(size=(4, 2))
        expected = np.reshape(inputs, newshape=(4, 2, 4, 4))
        test.test(("apply", (inputs, inputs_before_folding)),
                  expected_outputs=expected)