def _run_exp(self, agent_class: AgentBase, agent_type: str, n_jobs: int = 1): # Arrange exp = AgentExperiment( name=os.path.join(self._tmp_dir.name, 'test_exp'), agent_class=agent_class, agent_config=self._agent_config(agent_type=agent_type, folder=self._tmp_dir.name), n_reps=3, n_jobs=n_jobs, training_options={ "n_episodes": 4, "max_episode_steps": 4 }) # Act exp.run() # Assert self.assertEqual(3, len(exp._trained_agents)) self.assertEqual(3, len(exp.agent_scores)) for a in exp._trained_agents: self.assertEqual(4, len(a.training_history.history))
def run_exp(n_episodes: int = 500, max_episode_steps: int = 1500): exp = AgentExperiment(agent_class=RandomAgent, agent_config=MountainCarConfig('random'), n_reps=8, n_jobs=4, training_options={"n_episodes": n_episodes, "max_episode_steps": max_episode_steps}) exp.run() exp.save(fn=f"{RandomAgent.__name__}_experiment.pkl")
def run_exp(n_episodes: int = 500, max_episode_steps: int = 1000): exp = AgentExperiment(agent_class=LinearQAgent, agent_config=MountainCarConfig(agent_type='linear_1'), n_reps=6, n_jobs=6, training_options={"n_episodes": n_episodes, "max_episode_steps": max_episode_steps}) exp.run() exp.save(fn=f"{LinearQAgent.__name__}_experiment.pkl")
def run_exp(n_episodes: int = 1000, max_episode_steps: int = 500): exp = AgentExperiment(agent_class=ReinforceAgent, agent_config=CartPoleConfig(agent_type='reinforce'), n_reps=5, n_jobs=6, training_options={"n_episodes": n_episodes, "max_episode_steps": max_episode_steps, "update_every": 1}) exp.run() exp.save(fn=f"{ReinforceAgent.__name__}_experiment.pkl")
def run_exp(agent_type: str, n_episodes: int = 500, max_episode_steps: int = 1000): exp = AgentExperiment(name=f"{agent_type} MountainCar", agent_class=DeepQAgent, n_reps=8, n_jobs=8, training_options={ "n_episodes": n_episodes, "max_episode_steps": max_episode_steps }) exp.run() exp.save(fn=f"{DeepQAgent.__name__}_{agent_type}experiment.pkl")
def run_exp(agent_type: str, n_episodes: int = 1000, max_episode_steps: int = 500): exp = AgentExperiment(name=f"{agent_type} CartPole", agent_class=ActorCriticAgent, agent_config=CartPoleConfig(agent_type=agent_type), n_reps=6, n_jobs=6, training_options={ "n_episodes": n_episodes, "max_episode_steps": max_episode_steps }) exp.run() exp.save(fn=f"{ActorCriticAgent.__name__}_{agent_type}experiment.pkl")
def run_exp(agent_type: str, n_episodes: int = 400, max_episode_steps: int = 10000, model_mode: str = 'diff'): config = PongConfig(agent_type=agent_type, mode=model_mode) exp = AgentExperiment(name=f"{agent_type} {model_mode} Pong", agent_class=ActorCriticAgent, agent_config=config, n_reps=3, n_jobs=3, gpu_memory_per_agent=1024, training_options={"n_episodes": n_episodes, "verbose": 1, "max_episode_steps": max_episode_steps}) exp.run() exp.save(fn=f"{DeepQAgent.__name__}_{agent_type}experiment.pkl")
def run_exp(n_episodes: int = 1000, max_episode_steps: int = 1000): gpu = VirtualGPU(256) exp = AgentExperiment( agent_class=ReinforceAgent, agent_config=MountainCarConfig(agent_type='reinforce'), n_reps=5, n_jobs=1 if gpu.on else 5, training_options={ "n_episodes": n_episodes, "max_episode_steps": max_episode_steps, "update_every": 1 }) exp.run() exp.save(fn=f"{ReinforceAgent.__name__}_experiment.pkl")
def run_exp(agent_type: str, n_episodes: int = 1000, max_episode_steps: int = 10000): config = SpaceInvadersConfig(agent_type=agent_type, mode='stack') exp = AgentExperiment(name=f"{agent_type} Space Invaders", agent_class=DeepQAgent, agent_config=config, n_reps=6, n_jobs=6, gpu_memory_per_agent=512, training_options={ "n_episodes": n_episodes, "verbose": 1, "max_episode_steps": max_episode_steps }) exp.run() exp.save(fn=f"{DeepQAgent.__name__}_{agent_type}experiment.pkl")