def experiment(variant): env = gym.make('replab-v0')._start_rospy(goal_oriented=False) #SIM #env = gym.make('replab-v0')._start_sim(goal_oriented=False, render=False) env = NormalizedBoxEnv(env) es = GaussianStrategy(action_space=env.action_space) obs_dim = env.observation_space.low.size action_dim = env.action_space.low.size qf = FlattenMlp( input_size=obs_dim + action_dim, output_size=1, hidden_sizes=[400, 300], ) policy = TanhMlpPolicy( input_size=obs_dim, output_size=action_dim, hidden_sizes=[400, 300], ) exploration_policy = PolicyWrappedWithExplorationStrategy( exploration_strategy=es, policy=policy, ) algorithm = DDPG(env, qf=qf, policy=policy, exploration_policy=exploration_policy, **variant['algo_params']) algorithm.to(ptu.device) algorithm.train()
def example(variant): env = HalfCheetahEnv() if variant['normalize']: env = normalize(env) es = OUStrategy(action_space=env.action_space) qf = FeedForwardQFunction( int(env.observation_space.flat_dim), int(env.action_space.flat_dim), 32, 32, ) policy = FeedForwardPolicy( int(env.observation_space.flat_dim), int(env.action_space.flat_dim), 32, 32, ) exploration_policy = PolicyWrappedWithExplorationStrategy( exploration_strategy=es, policy=policy, ) algorithm = DDPG(env, qf=qf, policy=policy, exploration_policy=exploration_policy, **variant['algo_params']) algorithm.to(ptu.device) algorithm.train()
def experiment(variant): #env = NormalizedBoxEnv(HalfCheetahEnv()) env = NormalizedBoxEnv(create_swingup()) # Or for a specific version: # import gym # env = NormalizedBoxEnv(gym.make('HalfCheetah-v1')) es = OUStrategy(action_space=env.action_space) obs_dim = env.observation_space.low.size action_dim = env.action_space.low.size qf = FlattenMlp( input_size=obs_dim + action_dim, output_size=1, hidden_sizes=[400, 300], ) policy = TanhMlpPolicy( input_size=obs_dim, output_size=action_dim, hidden_sizes=[400, 300], ) exploration_policy = PolicyWrappedWithExplorationStrategy( exploration_strategy=es, policy=policy, ) algorithm = DDPG( env, qf=qf, policy=policy, exploration_policy=exploration_policy, **variant['algo_params'] ) algorithm.to(ptu.device) algorithm.train()
def ddpg_experiment(variant): env = variant['env_class'](**variant['env_kwargs']) env = MultitaskToFlatEnv(env) if variant.get('make_silent_env', True): env = MultitaskEnvToSilentMultitaskEnv(env) if variant['normalize']: env = NormalizedBoxEnv(env) exploration_type = variant['exploration_type'] if exploration_type == 'ou': es = OUStrategy(action_space=env.action_space) elif exploration_type == 'gaussian': es = GaussianStrategy( action_space=env.action_space, max_sigma=0.1, min_sigma=0.1, # Constant sigma ) elif exploration_type == 'epsilon': es = EpsilonGreedy( action_space=env.action_space, prob_random_action=0.1, ) else: raise Exception("Invalid type: " + exploration_type) obs_dim = env.observation_space.low.size action_dim = env.action_space.low.size qf = ConcatMlp( input_size=obs_dim + action_dim, output_size=1, hidden_sizes=[400, 300], ) policy = TanhMlpPolicy( input_size=obs_dim, output_size=action_dim, hidden_sizes=[400, 300], ) exploration_policy = PolicyWrappedWithExplorationStrategy( exploration_strategy=es, policy=policy, ) algorithm = DDPG( env, qf=qf, policy=policy, exploration_policy=exploration_policy, **variant['algo_kwargs'] ) algorithm.to(ptu.device) algorithm.train()
def experiment(variant): env = NormalizedBoxEnv(MultiGoalEnv( actuation_cost_coeff=10, distance_cost_coeff=1, goal_reward=10, )) es = OUStrategy(action_space=env.action_space) qf = FeedForwardQFunction( int(env.observation_space.flat_dim), int(env.action_space.flat_dim), 100, 100, ) policy = FeedForwardPolicy( int(env.observation_space.flat_dim), int(env.action_space.flat_dim), 100, 100, ) exploration_policy = PolicyWrappedWithExplorationStrategy( exploration_strategy=es, policy=policy, ) plotter = QFPolicyPlotter( qf=qf, # policy=policy, policy=exploration_policy, obs_lst=np.array([[-2.5, 0.0], [0.0, 0.0], [2.5, 2.5]]), default_action=[np.nan, np.nan], n_samples=100 ) algorithm = DDPG( env, qf=qf, policy=policy, exploration_policy=exploration_policy, render_eval_paths=True, plotter=plotter, **variant['algo_params'] ) algorithm.to(ptu.device) algorithm.train()
def experiment(variant): env = variant['env_class'](**variant['env_kwargs']) es = GaussianStrategy(action_space=env.action_space, **variant['es_kwargs']) obs_dim = env.observation_space.low.size action_dim = env.action_space.low.size qf = ConcatMlp(input_size=obs_dim + action_dim, output_size=1, **variant['qf_kwargs']) policy = TanhMlpPolicy(input_size=obs_dim, output_size=action_dim, **variant['policy_kwargs']) exploration_policy = PolicyWrappedWithExplorationStrategy( exploration_strategy=es, policy=policy, ) algorithm = DDPG(env, qf=qf, policy=policy, exploration_policy=exploration_policy, **variant['algo_kwargs']) algorithm.to(ptu.device) algorithm.train()
def experiment(variant): data = joblib.load(GOOD_DDPG_POLICY_PATH) expert_policy = data['policy'] env = NormalizedBoxEnv(variant['env_class']()) es = OUStrategy( action_space=env.action_space, **variant['es_kwargs'] ) obs_dim = env.observation_space.low.size action_dim = env.action_space.low.size qf = FlattenMlp( input_size=obs_dim + action_dim, output_size=1, hidden_sizes=[400, 300], ) policy = TanhMlpPolicy( input_size=obs_dim, output_size=action_dim, hidden_sizes=[400, 300], ) exploration_policy = PolicyWrappedWithExplorationStrategy( exploration_strategy=es, policy=expert_policy, ) algorithm = DDPG( env, qf=qf, policy=policy, exploration_policy=exploration_policy, **variant['algo_kwargs'] ) if ptu.gpu_enabled(): expert_policy.to(ptu.device) algorithm.to(ptu.device) algorithm.train()