def __init__( self, env_spec, hidden_sizes=(), learn_std=True, init_std=1.0, adaptive_std=False, std_share_network=False, std_hidden_sizes=(32, 32), min_std=1e-6, std_hidden_nonlinearity=NL.tanh, hidden_nonlinearity=NL.tanh, output_nonlinearity=None, mean_network=None, std_network=None, dist_cls=DiagonalGaussian, hlc_output_dim=0, subnet_split1=[2, 3, 4, 11, 12, 13], subnet_split2=[5, 6, 7, 14, 15, 16], sub_out_dim=3, option_dim=4, ): Serializable.quick_init(self, locals()) assert isinstance(env_spec.action_space, Box) obs_dim = env_spec.observation_space.flat_dim action_dim = env_spec.action_space.flat_dim # create network if mean_network is None: mean_network = HMLPPhase( hidden_sizes, hidden_nonlinearity, input_shape=(obs_dim, ), subnet_split1=subnet_split1, subnet_split2=subnet_split2, hlc_output_dim=hlc_output_dim, sub_out_dim=sub_out_dim, option_dim=option_dim, ) self._mean_network = mean_network l_mean = mean_network.output_layer obs_var = mean_network.input_layer.input_var if std_network is not None: l_log_std = std_network.output_layer else: if adaptive_std: std_network = MLP( input_shape=(obs_dim, ), input_layer=mean_network.input_layer, output_dim=action_dim, hidden_sizes=std_hidden_sizes, hidden_nonlinearity=std_hidden_nonlinearity, output_nonlinearity=None, ) l_log_std = std_network.output_layer else: l_log_std = ParamLayer( mean_network.input_layer, num_units=action_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) self.min_std = min_std mean_var, log_std_var = L.get_output([l_mean, l_log_std]) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(min_std)) self._mean_var, self._log_std_var = mean_var, log_std_var self._l_mean = l_mean self._l_log_std = l_log_std self._dist = dist_cls(action_dim) LasagnePowered.__init__(self, [l_mean, l_log_std]) super(GaussianMLPPolicy, self).__init__(env_spec) self._f_dist = ext.compile_function( inputs=[obs_var], outputs=[mean_var, log_std_var], ) self._f_dist = ext.compile_function( inputs=[obs_var], outputs=[mean_var, log_std_var], ) self.hidden_signals = ext.compile_function( inputs=[obs_var], outputs=[ mean_network.hlc_signal1, mean_network.hlc_signal2, mean_network.leg1_part, mean_network.leg2_part ])
def __init__( self, env_spec, hidden_sizes=(32, 32), learn_std=True, init_std=1.0, adaptive_std=False, std_share_network=False, std_hidden_sizes=(32, 32), min_std=1e-6, std_hidden_nonlinearity=NL.tanh, hidden_nonlinearity=NL.tanh, output_nonlinearity=None, mean_network=None, std_network=None, dist_cls=DiagonalGaussian, ): """ :param env_spec: :param hidden_sizes: list of sizes for the fully-connected hidden layers :param learn_std: Is std trainable :param init_std: Initial std :param adaptive_std: :param std_share_network: :param std_hidden_sizes: list of sizes for the fully-connected layers for std :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues :param std_hidden_nonlinearity: :param hidden_nonlinearity: nonlinearity used for each hidden layer :param output_nonlinearity: nonlinearity for the output layer :param mean_network: custom network for the output mean :param std_network: custom network for the output log std :return: """ Serializable.quick_init(self, locals()) assert isinstance(env_spec.action_space, Discrete) #obs_dim = env_spec.observation_space.flat_dim obs_dim = 6400 action_dim = env_spec.action_space.flat_dim # create network if mean_network is None: mean_network = MLP( input_shape=(obs_dim,), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, ) self._mean_network = mean_network l_mean = mean_network.output_layer obs_var = mean_network.input_layer.input_var if std_network is not None: l_log_std = std_network.output_layer else: if adaptive_std: std_network = MLP( input_shape=(obs_dim,), input_layer=mean_network.input_layer, output_dim=action_dim, hidden_sizes=std_hidden_sizes, hidden_nonlinearity=std_hidden_nonlinearity, output_nonlinearity=None, ) l_log_std = std_network.output_layer else: l_log_std = ParamLayer( mean_network.input_layer, num_units=action_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) self.min_std = min_std mean_var, log_std_var = L.get_output([l_mean, l_log_std]) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(min_std)) self._mean_var, self._log_std_var = mean_var, log_std_var self._l_mean = l_mean self._l_log_std = l_log_std self._dist = dist_cls(action_dim) LasagnePowered.__init__(self, [l_mean, l_log_std]) super(GaussianMLPPolicy, self).__init__(env_spec) self._f_dist = ext.compile_function( inputs=[obs_var], outputs=[mean_var, log_std_var], )
def __init__( self, input_shape, output_dim, mean_network=None, hidden_sizes=(32, 32), hidden_nonlinearity=NL.rectify, optimizer=None, use_trust_region=True, step_size=0.01, learn_std=True, init_std=1.0, adaptive_std=False, std_share_network=False, std_hidden_sizes=(32, 32), std_nonlinearity=None, normalize_inputs=True, normalize_outputs=True, name=None, ): """ :param input_shape: Shape of the input data. :param output_dim: Dimension of output. :param hidden_sizes: Number of hidden units of each layer of the mean network. :param hidden_nonlinearity: Non-linearity used for each layer of the mean network. :param optimizer: Optimizer for minimizing the negative log-likelihood. :param use_trust_region: Whether to use trust region constraint. :param step_size: KL divergence constraint for each iteration :param learn_std: Whether to learn the standard deviations. Only effective if adaptive_std is False. If adaptive_std is True, this parameter is ignored, and the weights for the std network are always learned. :param adaptive_std: Whether to make the std a function of the states. :param std_share_network: Whether to use the same network as the mean. :param std_hidden_sizes: Number of hidden units of each layer of the std network. Only used if `std_share_network` is False. It defaults to the same architecture as the mean. :param std_nonlinearity: Non-linearity used for each layer of the std network. Only used if `std_share_network` is False. It defaults to the same non-linearity as the mean. """ Serializable.quick_init(self, locals()) if optimizer is None: if use_trust_region: optimizer = PenaltyLbfgsOptimizer() else: optimizer = LbfgsOptimizer() self._optimizer = optimizer if mean_network is None: mean_network = MLP( input_shape=input_shape, output_dim=output_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=None, ) l_mean = mean_network.output_layer if adaptive_std: l_log_std = MLP( input_shape=input_shape, input_var=mean_network.input_layer.input_var, output_dim=output_dim, hidden_sizes=std_hidden_sizes, hidden_nonlinearity=std_nonlinearity, output_nonlinearity=None, ).output_layer else: l_log_std = ParamLayer( mean_network.input_layer, num_units=output_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) LasagnePowered.__init__(self, [l_mean, l_log_std]) xs_var = mean_network.input_layer.input_var ys_var = TT.matrix("ys") old_means_var = TT.matrix("old_means") old_log_stds_var = TT.matrix("old_log_stds") x_mean_var = theano.shared(np.zeros((1, ) + input_shape), name="x_mean", broadcastable=(True, ) + (False, ) * len(input_shape)) x_std_var = theano.shared(np.ones((1, ) + input_shape), name="x_std", broadcastable=(True, ) + (False, ) * len(input_shape)) y_mean_var = theano.shared(np.zeros((1, output_dim)), name="y_mean", broadcastable=(True, False)) y_std_var = theano.shared(np.ones((1, output_dim)), name="y_std", broadcastable=(True, False)) normalized_xs_var = (xs_var - x_mean_var) / x_std_var normalized_ys_var = (ys_var - y_mean_var) / y_std_var normalized_means_var = L.get_output( l_mean, {mean_network.input_layer: normalized_xs_var}) normalized_log_stds_var = L.get_output( l_log_std, {mean_network.input_layer: normalized_xs_var}) means_var = normalized_means_var * y_std_var + y_mean_var log_stds_var = normalized_log_stds_var + TT.log(y_std_var) normalized_old_means_var = (old_means_var - y_mean_var) / y_std_var normalized_old_log_stds_var = old_log_stds_var - TT.log(y_std_var) dist = self._dist = DiagonalGaussian() normalized_dist_info_vars = dict(mean=normalized_means_var, log_std=normalized_log_stds_var) mean_kl = TT.mean( dist.kl_sym( dict(mean=normalized_old_means_var, log_std=normalized_old_log_stds_var), normalized_dist_info_vars, )) loss = -TT.mean( dist.log_likelihood_sym(normalized_ys_var, normalized_dist_info_vars)) self._f_predict = compile_function([xs_var], means_var) self._f_pdists = compile_function([xs_var], [means_var, log_stds_var]) self._l_mean = l_mean self._l_log_std = l_log_std optimizer_args = dict( loss=loss, target=self, network_outputs=[normalized_means_var, normalized_log_stds_var], ) if use_trust_region: optimizer_args["leq_constraint"] = (mean_kl, step_size) optimizer_args["inputs"] = [ xs_var, ys_var, old_means_var, old_log_stds_var ] else: optimizer_args["inputs"] = [xs_var, ys_var] self._optimizer.update_opt(**optimizer_args) self._use_trust_region = use_trust_region self._name = name self._normalize_inputs = normalize_inputs self._normalize_outputs = normalize_outputs self._x_mean_var = x_mean_var self._x_std_var = x_std_var self._y_mean_var = y_mean_var self._y_std_var = y_std_var
def run_task(vv, log_dir=None, exp_name=None): global policy global baseline trpo_stepsize = 0.01 trpo_subsample_factor = 0.2 # Check if variant is available if vv['model_type'] not in ['BrushTireModel', 'LinearTireModel']: raise ValueError('Unrecognized model type for simulating robot') if vv['robot_type'] not in ['MRZR', 'RCCar']: raise ValueError('Unrecognized robot type') # Load environment if not vv['use_ros']: env = CircleEnv(target_velocity=vv['target_velocity'], radius=vv['radius'], dt=vv['dt'], model_type=vv['model_type'], robot_type=vv['robot_type']) else: from aa_simulation.envs.circle.circle_env_ros import CircleEnvROS env = CircleEnvROS(target_velocity=vv['target_velocity'], radius=vv['radius'], dt=vv['dt'], model_type=vv['model_type'], robot_type=vv['robot_type']) # Save variant information for comparison plots variant_file = logger.get_snapshot_dir() + '/variant.json' logger.log_variant(variant_file, vv) # Set variance for each action component separately for exploration # Note: We set the variance manually because we are not scaling our # action space during training. init_std_speed = vv['target_velocity'] / 4 init_std_steer = np.pi / 6 init_std = [init_std_speed, init_std_steer] # Build policy and baseline networks # Note: Mean of policy network set to analytically computed values for # faster training (rough estimates for RL to fine-tune). if policy is None or baseline is None: wheelbase = 0.257 target_velocity = vv['target_velocity'] target_steering = np.arctan(wheelbase / vv['radius']) # CCW output_mean = np.array([target_velocity, target_steering]) hidden_sizes = (32, 32) # In mean network, allow output b values to dominate final output # value by constraining the magnitude of the output W matrix. This is # to allow faster learning. These numbers are arbitrarily chosen. W_gain = min(vv['target_velocity'] / 5, np.pi / 15) mean_network = MLP(input_shape=(env.spec.observation_space.flat_dim, ), output_dim=env.spec.action_space.flat_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=LN.tanh, output_nonlinearity=None, output_W_init=LI.GlorotUniform(gain=W_gain), output_b_init=output_mean) policy = GaussianMLPPolicy(env_spec=env.spec, hidden_sizes=hidden_sizes, init_std=init_std, mean_network=mean_network) baseline = LinearFeatureBaseline(env_spec=env.spec, target_key='returns') # Reset variance to re-enable exploration when using pre-trained networks else: policy._l_log_std = ParamLayer( policy._mean_network.input_layer, num_units=env.spec.action_space.flat_dim, param=LI.Constant(np.log(init_std)), name='output_log_std', trainable=True) obs_var = policy._mean_network.input_layer.input_var mean_var, log_std_var = L.get_output( [policy._l_mean, policy._l_log_std]) policy._log_std_var = log_std_var LasagnePowered.__init__(policy, [policy._l_mean, policy._l_log_std]) policy._f_dist = ext.compile_function(inputs=[obs_var], outputs=[mean_var, log_std_var]) safety_baseline = LinearFeatureBaseline(env_spec=env.spec, target_key='safety_returns') safety_constraint = CircleSafetyConstraint(max_value=1.0, eps=vv['eps'], baseline=safety_baseline) if vv['algo'] == 'TRPO': algo = TRPO( env=env, policy=policy, baseline=baseline, batch_size=600, max_path_length=env.horizon, n_itr=600, discount=0.99, step_size=trpo_stepsize, plot=False, ) else: algo = CPO(env=env, policy=policy, baseline=baseline, safety_constraint=safety_constraint, batch_size=600, max_path_length=env.horizon, n_itr=600, discount=0.99, step_size=trpo_stepsize, gae_lambda=0.95, safety_gae_lambda=1, optimizer_args={'subsample_factor': trpo_subsample_factor}, plot=False) algo.train()
def __init__( self, env_spec, hidden_sizes=(32, 32), learn_std=True, init_std=1.0, adaptive_std=False, std_share_network=False, std_hidden_sizes=(32, 32), min_std=1e-6, std_hidden_nonlinearity=NL.tanh, hidden_nonlinearity=NL.tanh, output_nonlinearity=None, mean_network=None, std_network=None, split_masks=None, dist_cls=DiagonalGaussian, mp_dim=0, mp_sel_hid_dim=0, mp_sel_num=0, mp_projection_dim=2, net_mode=0, # 0: vanilla, 1: append mp to second layer, 2: project mp to lower space, 3: mp selection blending, 4: mp selection discrete split_init_net=None, split_units=None, wc_net_path=None, learn_segment=False, split_num=1, split_layer=[0], split_std=False, task_id=0, ): """ :param env_spec: :param hidden_sizes: list of sizes for the fully-connected hidden layers :param learn_std: Is std trainable :param init_std: Initial std :param adaptive_std: :param std_share_network: :param std_hidden_sizes: list of sizes for the fully-connected layers for std :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues :param std_hidden_nonlinearity: :param hidden_nonlinearity: nonlinearity used for each hidden layer :param output_nonlinearity: nonlinearity for the output layer :param mean_network: custom network for the output mean :param std_network: custom network for the output log std :return: """ Serializable.quick_init(self, locals()) assert isinstance(env_spec.action_space, Box) obs_dim = env_spec.observation_space.flat_dim action_dim = env_spec.action_space.flat_dim # create network if mean_network is None: if net_mode == 1: mean_network = MLPAppend( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, append_dim=mp_dim, ) elif net_mode == 2: mean_network = MLP_PROJ( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, mp_dim=mp_dim, mp_hid_dim=16, mp_proj_dim=mp_projection_dim, ) elif net_mode == 3: mean_network = MLP_PS( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, mp_dim=mp_dim, mp_sel_hid_dim=mp_sel_hid_dim, mp_sel_num=mp_sel_num, ) elif net_mode == 4: wc_net = joblib.load(wc_net_path) mean_network = MLP_PSD( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, mp_dim=mp_dim, mp_sel_hid_dim=mp_sel_hid_dim, mp_sel_num=mp_sel_num, wc_net=wc_net, learn_segment=learn_segment, ) elif net_mode == 5: mean_network = MLP_Split( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, split_layer=split_layer, split_num=split_num, ) elif net_mode == 6: mean_network = MLP_SplitAct( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, split_num=split_num, split_units=split_units, init_net=split_init_net._mean_network, ) elif net_mode == 7: mean_network = MLP_SoftSplit( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, split_num=split_num, init_net=split_init_net._mean_network, ) elif net_mode == 8: mean_network = MLP_MaskedSplit( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, split_num=split_num, split_masks=split_masks, init_net=split_init_net._mean_network, ) elif net_mode == 9: mean_network = MLP_MaskedSplitCont( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, task_id=task_id, init_net=split_init_net._mean_network, ) else: mean_network = MLP( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, ) self._mean_network = mean_network l_mean = mean_network.output_layer obs_var = mean_network.input_layer.input_var if std_network is not None: l_log_std = std_network.output_layer else: if adaptive_std: std_network = MLP( input_shape=(obs_dim, ), input_layer=mean_network.input_layer, output_dim=action_dim, hidden_sizes=std_hidden_sizes, hidden_nonlinearity=std_hidden_nonlinearity, output_nonlinearity=None, ) l_log_std = std_network.output_layer else: if net_mode != 8 or not split_std: l_log_std = ParamLayer( mean_network.input_layer, num_units=action_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) else: l_log_std = ParamLayerSplit( mean_network.input_layer, num_units=action_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, split_num=split_num, init_param=split_init_net.get_params()[-1]) if net_mode == 6 or net_mode == 7 or (net_mode == 8 and not split_std): l_log_std.get_params()[0].set_value( split_init_net.get_params()[-1].get_value()) if net_mode == 9: l_log_std.get_params()[0].set_value( split_init_net.get_params()[-1].get_value() + 0.5) self.min_std = min_std mean_var, log_std_var = L.get_output([l_mean, l_log_std]) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(min_std)) self._mean_var, self._log_std_var = mean_var, log_std_var self._l_mean = l_mean self._l_log_std = l_log_std self._dist = dist_cls(action_dim) LasagnePowered.__init__(self, [l_mean, l_log_std]) super(GaussianMLPPolicy, self).__init__(env_spec) self._f_dist = ext.compile_function( inputs=[obs_var], outputs=[mean_var, log_std_var], ) if net_mode == 3 or net_mode == 4: self._f_blendweight = ext.compile_function( inputs=[obs_var], outputs=[self._mean_network._blend_weights]) entropy = -TT.mean(self._mean_network._blend_weights * TT.log(self._mean_network._blend_weights)) self._f_weightentropy = ext.compile_function(inputs=[obs_var], outputs=[entropy]) avg_weights = TT.mean(self._mean_network._blend_weights, axis=0) entropy2 = -TT.mean(avg_weights * TT.log(avg_weights)) self._f_choiceentropy = ext.compile_function(inputs=[obs_var], outputs=[entropy2])
def __init__( self, env_spec, env, latent_dim=2, latent_name='bernoulli', bilinear_integration=False, resample=False, hidden_sizes=(32, 32), learn_std=True, init_std=1.0, adaptive_std=False, std_share_network=False, std_hidden_sizes=(32, 32), std_hidden_nonlinearity=NL.tanh, hidden_nonlinearity=NL.tanh, output_nonlinearity=None, min_std=1e-4, pkl_path=None, ): """ :param latent_dim: dimension of the latent variables :param latent_name: distribution of the latent variables :param bilinear_integration: Boolean indicator of bilinear integration or simple concatenation :param resample: Boolean indicator of resampling at every step or only at the start of the rollout (or whenever agent is reset, which can happen several times along the rollout with rollout in utils_snn) """ self.latent_dim = latent_dim ##could I avoid needing this self for the get_action? self.latent_name = latent_name self.bilinear_integration = bilinear_integration self.resample = resample self.min_std = min_std self.hidden_sizes = hidden_sizes self.pre_fix_latent = np.array( [] ) # if this is not empty when using reset() it will use this latent self.latent_fix = np.array( []) # this will hold the latents variable sampled in reset() self._set_std_to_0 = False self.pkl_path = pkl_path if self.pkl_path: data = joblib.load(os.path.join(config.PROJECT_PATH, self.pkl_path)) self.old_policy = data["policy"] self.latent_dim = self.old_policy.latent_dim self.latent_name = self.old_policy.latent_name self.bilinear_integration = self.old_policy.bilinear_integration self.resample = self.old_policy.resample # this could not be needed... self.min_std = self.old_policy.min_std self.hidden_sizes_snn = self.old_policy.hidden_sizes if latent_name == 'normal': self.latent_dist = DiagonalGaussian(self.latent_dim) self.latent_dist_info = dict(mean=np.zeros(self.latent_dim), log_std=np.zeros(self.latent_dim)) elif latent_name == 'bernoulli': self.latent_dist = Bernoulli(self.latent_dim) self.latent_dist_info = dict(p=0.5 * np.ones(self.latent_dim)) elif latent_name == 'categorical': self.latent_dist = Categorical(self.latent_dim) if self.latent_dim > 0: self.latent_dist_info = dict(prob=1. / self.latent_dim * np.ones(self.latent_dim)) else: self.latent_dist_info = dict(prob=np.ones(self.latent_dim)) else: raise NotImplementedError Serializable.quick_init(self, locals()) assert isinstance(env_spec.action_space, Box) # retrieve dimensions from env! if isinstance(env, MazeEnv) or isinstance(env, GatherEnv): self.obs_robot_dim = env.robot_observation_space.flat_dim self.obs_maze_dim = env.maze_observation_space.flat_dim elif isinstance(env, NormalizedEnv): if isinstance(env.wrapped_env, MazeEnv) or isinstance( env.wrapped_env, GatherEnv): self.obs_robot_dim = env.wrapped_env.robot_observation_space.flat_dim self.obs_maze_dim = env.wrapped_env.maze_observation_space.flat_dim else: self.obs_robot_dim = env.wrapped_env.observation_space.flat_dim self.obs_maze_dim = 0 else: self.obs_robot_dim = env.observation_space.flat_dim self.obs_maze_dim = 0 # print("the dims of the env are(rob/maze): ", self.obs_robot_dim, self.obs_maze_dim) all_obs_dim = env_spec.observation_space.flat_dim assert all_obs_dim == self.obs_robot_dim + self.obs_maze_dim if self.bilinear_integration: obs_dim = self.obs_robot_dim + self.latent_dim +\ self.obs_robot_dim * self.latent_dim else: obs_dim = self.obs_robot_dim + self.latent_dim # here only if concat. action_dim = env_spec.action_space.flat_dim # for _ in range(10): # print("OK!") # print(obs_dim) # print(env_spec.observation_space.flat_dim) # print(self.latent_dim) mean_network = MLP( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, name="meanMLP", ) self._layers_mean = mean_network.layers l_mean = mean_network.output_layer obs_var = mean_network.input_layer.input_var if adaptive_std: log_std_network = MLP(input_shape=(obs_dim, ), input_var=obs_var, output_dim=action_dim, hidden_sizes=std_hidden_sizes, hidden_nonlinearity=std_hidden_nonlinearity, output_nonlinearity=None, name="log_stdMLP") l_log_std = log_std_network.output_layer self._layers_log_std = log_std_network.layers else: l_log_std = ParamLayer( mean_network.input_layer, num_units=action_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) self._layers_log_std = [l_log_std] self._layers_snn = self._layers_mean + self._layers_log_std # this returns a list with the "snn" layers if self.pkl_path: # restore from pkl file data = joblib.load(os.path.join(config.PROJECT_PATH, self.pkl_path)) warm_params = data['policy'].get_params_internal() self.set_params_snn(warm_params) mean_var, log_std_var = L.get_output([l_mean, l_log_std]) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(self.min_std)) self._l_mean = l_mean self._l_log_std = l_log_std self._dist = DiagonalGaussian(action_dim) LasagnePowered.__init__(self, [l_mean, l_log_std]) super(GaussianMLPPolicy_snn_restorable, self).__init__(env_spec) self._f_dist = ext.compile_function( inputs=[obs_var], outputs=[mean_var, log_std_var], )
def __init__( self, env_spec, zero_gradient_cutoff, hidden_sizes=(32, 32), learn_std=True, init_std=1.0, adaptive_std=False, std_share_network=False, std_hidden_sizes=(32, 32), min_std=1e-6, std_hidden_nonlinearity=NL.tanh, hidden_nonlinearity=NL.tanh, output_nonlinearity=None, mean_network=None, std_network=None, dist_cls=DiagonalGaussian, adversarial=True, eps=0.1, probability=0.0, use_dynamics=False, random=False, observable_noise=False, use_max_norm=True, record_traj=False, set_dynamics=None, mask_augmentation=False, ): """ :param env_spec: :param hidden_sizes: list of sizes for the fully-connected hidden layers :param learn_std: Is std trainable :param init_std: Initial std :param adaptive_std: :param std_share_network: :param std_hidden_sizes: list of sizes for the fully-connected layers for std :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues :param std_hidden_nonlinearity: :param hidden_nonlinearity: nonlinearity used for each hidden layer :param output_nonlinearity: nonlinearity for the output layer :param mean_network: custom network for the output mean :param std_network: custom network for the output log std :param dist_cls: defines probability distribution over actions The following parameters are specific to the AdversarialPolicy Class. :param adversarial: whether the policy should incorporate adversarial states during rollout :param eps: the strength of the adversarial perturbation :param probability: frequency of adversarial updates. If 0, do exactly one update at the beginning of every episode :param use_dynamics: if True, generate adversarial dynamics updates, otherwise do adversarial state updates :param random: if True, use a random perturbation instead of an adversarial perturbation :param observable_noise: if True, don't set adversarial state in the environment, treat it as noise on observation :param zero_gradient_cutoff: determines cutoff index for zero-ing out gradients - this is useful when doing adversarial dynamics vs. adversarial states, when we only want to compute gradients for one section of the augmented state vector. We also use this to determine what the original, non-augmented state size is. :param use_max_norm: if True, use Fast Gradient Sign Method (FGSM) to generate adversarial perturbations, else use full gradient ascent :param record_traj: if True, rollout dictionaries will contain qpos and qvel trajectories. This is useful for plotting trajectories. :param set_dynamics: if provided, the next rollout initializes the environment to the passed dynamics. :param mask_augmentation: if True, don't augment the state (even though the environment augments the state with the dynamics parameters, the policy will ignore these dimensions) :return: """ Serializable.quick_init(self, locals()) assert isinstance(env_spec.action_space, Box) obs_dim = env_spec.observation_space.flat_dim action_dim = env_spec.action_space.flat_dim # TODO: make a more elegant solution to this # This is here because we assume the original, unaugmented state size is provided. assert (zero_gradient_cutoff is not None) # if we're ignoring state augmentation, modify observation size / network size accordingly if mask_augmentation: obs_dim = zero_gradient_cutoff # create network if mean_network is None: mean_network = MLP( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, ) self._mean_network = mean_network l_mean = mean_network.output_layer obs_var = mean_network.input_layer.input_var if std_network is not None: l_log_std = std_network.output_layer else: if adaptive_std: std_network = MLP( input_shape=(obs_dim, ), input_layer=mean_network.input_layer, output_dim=action_dim, hidden_sizes=std_hidden_sizes, hidden_nonlinearity=std_hidden_nonlinearity, output_nonlinearity=None, ) l_log_std = std_network.output_layer else: l_log_std = ParamLayer( mean_network.input_layer, num_units=action_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) self.min_std = min_std mean_var, log_std_var = L.get_output([l_mean, l_log_std]) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(min_std)) self._mean_var, self._log_std_var = mean_var, log_std_var self._l_mean = l_mean self._l_log_std = l_log_std # take exponential for the actual standard dev self._tru_std_var = TT.exp(self._log_std_var) # take gradients of mean network, exponential of std network wrt L2 norm self._mean_grad = theano.grad(self._mean_var.norm(2), obs_var) self._std_grad = theano.grad(self._tru_std_var.norm(2), obs_var, disconnected_inputs='warn') self._dist = dist_cls(action_dim) LasagnePowered.__init__(self, [l_mean, l_log_std]) super(AdversarialPolicy, self).__init__(env_spec) self._f_dist = ext.compile_function( inputs=[obs_var], outputs=[mean_var, log_std_var], ) # function to get gradients self._f_grad_dist = ext.compile_function( inputs=[obs_var], outputs=[self._mean_grad, self._std_grad]) # initialize adversarial parameters self.adversarial = adversarial self.eps = eps self.probability = probability self.use_dynamics = use_dynamics self.random = random self.observable_noise = observable_noise self.zero_gradient_cutoff = zero_gradient_cutoff self.use_max_norm = use_max_norm self.record_traj = record_traj self.set_dynamics = set_dynamics self.mask_augmentation = mask_augmentation
def __init__( self, env_spec, env, pkl_path=None, json_path=None, npz_path=None, trainable_snn=True, ##CF - latents units at the input latent_dim=3, # we keep all these as the dim of the output of the other MLP and others that we will need! latent_name='categorical', bilinear_integration=False, # again, needs to match! resample=False, # this can change: frequency of resampling the latent? hidden_sizes_snn=(32, 32), hidden_sizes_selector=(10, 10), external_latent=False, learn_std=True, init_std=1.0, adaptive_std=False, std_share_network=False, std_hidden_sizes=(32, 32), std_hidden_nonlinearity=NL.tanh, hidden_nonlinearity=NL.tanh, output_nonlinearity=None, min_std=1e-4, ): self.latent_dim = latent_dim ## could I avoid needing this self for the get_action? self.latent_name = latent_name self.bilinear_integration = bilinear_integration self.resample = resample self.min_std = min_std self.hidden_sizes_snn = hidden_sizes_snn self.hidden_sizes_selector = hidden_sizes_selector self.pre_fix_latent = np.array([]) # if this is not empty when using reset() it will use this latent self.latent_fix = np.array([]) # this will hold the latents variable sampled in reset() self.shared_latent_var = theano.shared(self.latent_fix) # this is for external lat! update that self._set_std_to_0 = False self.trainable_snn = trainable_snn self.external_latent = external_latent self.pkl_path = pkl_path self.json_path = json_path self.npz_path = npz_path self.old_policy = None if self.json_path: # there is another one after defining all the NN to warm-start the params of the SNN data = json.load( open(os.path.join(config.PROJECT_PATH, self.json_path), 'r')) # I should do this with the json file self.old_policy_json = data['json_args']["policy"] self.latent_dim = self.old_policy_json['latent_dim'] self.latent_name = self.old_policy_json['latent_name'] self.bilinear_integration = self.old_policy_json['bilinear_integration'] self.resample = self.old_policy_json['resample'] # this could not be needed... self.min_std = self.old_policy_json['min_std'] self.hidden_sizes_snn = self.old_policy_json['hidden_sizes'] elif self.pkl_path: data = joblib.load(os.path.join(config.PROJECT_PATH, self.pkl_path)) self.old_policy = data["policy"] self.latent_dim = self.old_policy.latent_dim self.latent_name = self.old_policy.latent_name self.bilinear_integration = self.old_policy.bilinear_integration self.resample = self.old_policy.resample # this could not be needed... self.min_std = self.old_policy.min_std self.hidden_sizes_snn = self.old_policy.hidden_sizes if self.latent_name == 'normal': self.latent_dist = DiagonalGaussian(self.latent_dim) self.latent_dist_info = dict(mean=np.zeros(self.latent_dim), log_std=np.zeros(self.latent_dim)) elif self.latent_name == 'bernoulli': self.latent_dist = Bernoulli(self.latent_dim) self.latent_dist_info = dict(p=0.5 * np.ones(self.latent_dim)) elif self.latent_name == 'categorical': self.latent_dist = Categorical(self.latent_dim) if self.latent_dim > 0: self.latent_dist_info = dict(prob=1. / self.latent_dim * np.ones(self.latent_dim)) else: self.latent_dist_info = dict(prob=np.ones(self.latent_dim)) # this is an empty array else: raise NotImplementedError Serializable.quick_init(self, locals()) assert isinstance(env_spec.action_space, Box) # retrieve dimensions and check consistency if isinstance(env, MazeEnv) or isinstance(env, GatherEnv): self.obs_robot_dim = env.robot_observation_space.flat_dim self.obs_maze_dim = env.maze_observation_space.flat_dim elif isinstance(env, NormalizedEnv): if isinstance(env.wrapped_env, MazeEnv) or isinstance(env.wrapped_env, GatherEnv): self.obs_robot_dim = env.wrapped_env.robot_observation_space.flat_dim self.obs_maze_dim = env.wrapped_env.maze_observation_space.flat_dim else: self.obs_robot_dim = env.wrapped_env.observation_space.flat_dim self.obs_maze_dim = 0 else: self.obs_robot_dim = env.observation_space.flat_dim self.obs_maze_dim = 0 # print("the dims of the env are(rob/maze): ", self.obs_robot_dim, self.obs_maze_dim) all_obs_dim = env_spec.observation_space.flat_dim assert all_obs_dim == self.obs_robot_dim + self.obs_maze_dim if self.external_latent: # in case we want to fix the latent externally l_all_obs_var = L.InputLayer(shape=(None,) + (self.obs_robot_dim + self.obs_maze_dim,)) all_obs_var = l_all_obs_var.input_var # l_selection = ConstOutputLayer(incoming=l_all_obs_var, output_var=self.shared_latent_var) l_selection = ParamLayer(incoming=l_all_obs_var, num_units=self.latent_dim, param=self.shared_latent_var, trainable=False) # Rui: change False to True? this is a simple layer that directly outputs self.shared_latent_var selection_var = L.get_output(l_selection) else: # create network with softmax output: it will be the latent 'selector'! latent_selection_network = MLP( input_shape=(self.obs_robot_dim + self.obs_maze_dim,), output_dim=self.latent_dim, hidden_sizes=self.hidden_sizes_selector, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=NL.softmax, ) l_all_obs_var = latent_selection_network.input_layer all_obs_var = latent_selection_network.input_layer.input_var # collect the output to select the behavior of the robot controller (equivalent to latents) l_selection = latent_selection_network.output_layer selection_var = L.get_output(l_selection) # split all_obs into the robot and the maze obs --> ROBOT goes first!! l_obs_robot = CropLayer(l_all_obs_var, start_index=None, end_index=self.obs_robot_dim) l_obs_maze = CropLayer(l_all_obs_var, start_index=self.obs_robot_dim, end_index=None) # for _ in range(10): # print("OK!") # print(self.obs_robot_dim) # print(self.obs_maze_dim) obs_robot_var = all_obs_var[:, :self.obs_robot_dim] obs_maze_var = all_obs_var[:, self.obs_robot_dim:] # Enlarge obs with the selectors (or latents). Here just computing the final input dim if self.bilinear_integration: l_obs_snn = BilinearIntegrationLayer([l_obs_robot, l_selection]) else: l_obs_snn = L.ConcatLayer([l_obs_robot, l_selection]) action_dim = env_spec.action_space.flat_dim # create the action network mean_network = MLP( input_layer=l_obs_snn, # input the layer that handles the integration of the selector output_dim=action_dim, hidden_sizes=self.hidden_sizes_snn, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, name="meanMLP", ) self._layers_mean = mean_network.layers l_mean = mean_network.output_layer if adaptive_std: log_std_network = MLP( input_layer=l_obs_snn, output_dim=action_dim, hidden_sizes=std_hidden_sizes, hidden_nonlinearity=std_hidden_nonlinearity, output_nonlinearity=None, name="log_stdMLP" ) l_log_std = log_std_network.output_layer self._layers_log_std = log_std_network.layers else: l_log_std = ParamLayer( incoming=mean_network.input_layer, num_units=action_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) self._layers_log_std = [l_log_std] self._layers_snn = self._layers_mean + self._layers_log_std # this returns a list with the "snn" layers if not self.trainable_snn: for layer in self._layers_snn: for param, tags in layer.params.items(): # params of layer are OrDict: key=the shared var, val=tags tags.remove("trainable") if self.json_path and self.npz_path: warm_params_dict = dict(np.load(os.path.join(config.PROJECT_PATH, self.npz_path))) # keys = list(param_dict.keys()) self.set_params_snn(warm_params_dict) elif self.pkl_path: data = joblib.load(os.path.join(config.PROJECT_PATH, self.pkl_path)) warm_params = data['policy'].get_params_internal() self.set_params_snn(warm_params) mean_var, log_std_var = L.get_output([l_mean, l_log_std]) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(self.min_std)) self._l_mean = l_mean self._l_log_std = l_log_std self._dist = DiagonalGaussian(action_dim) LasagnePowered.__init__(self, [l_mean, l_log_std]) super(GaussianMLPPolicy_snn_hier, self).__init__(env_spec) # debug obs_snn_var = L.get_output(l_obs_snn) self._l_obs_snn = ext.compile_function( inputs=[all_obs_var], outputs=obs_snn_var, ) # self._log_std = ext.compile_function( # inputs=[all_obs_var], # outputs=log_std_var, # ) self._mean = ext.compile_function( inputs=[all_obs_var], outputs=mean_var, ) self._f_dist = ext.compile_function( inputs=[all_obs_var], outputs=[mean_var, log_std_var], ) # if I want to monitor the selector output self._f_select = ext.compile_function( inputs=[all_obs_var], outputs=selection_var, )
def __init__( self, env_spec, hidden_sizes=(32, ), state_include_action=True, hidden_nonlinearity=NL.tanh, learn_std=True, init_std=1.0, output_nonlinearity=None, ): """ :param env_spec: A spec for the env. :param hidden_sizes: list of sizes for the fully connected hidden layers :param hidden_nonlinearity: nonlinearity used for each hidden layer :return: """ Serializable.quick_init(self, locals()) super(GaussianGRUPolicy, self).__init__(env_spec) assert len(hidden_sizes) == 1 if state_include_action: obs_dim = env_spec.observation_space.flat_dim + env_spec.action_space.flat_dim else: obs_dim = env_spec.observation_space.flat_dim action_dim = env_spec.action_space.flat_dim mean_network = GRUNetwork( input_shape=(obs_dim, ), output_dim=action_dim, hidden_dim=hidden_sizes[0], hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, ) l_mean = mean_network.output_layer obs_var = mean_network.input_var l_log_std = ParamLayer( mean_network.input_layer, num_units=action_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) l_step_log_std = ParamLayer( mean_network.step_input_layer, num_units=action_dim, param=l_log_std.param, name="step_output_log_std", trainable=learn_std, ) self._mean_network = mean_network self._l_log_std = l_log_std self._state_include_action = state_include_action self._f_step_mean_std = ext.compile_function( [ mean_network.step_input_layer.input_var, mean_network.step_prev_hidden_layer.input_var ], L.get_output([ mean_network.step_output_layer, l_step_log_std, mean_network.step_hidden_layer ])) self._prev_action = None self._prev_hidden = None self._hidden_sizes = hidden_sizes self._dist = RecurrentDiagonalGaussian(action_dim) self.reset() self.set_greedy(False) LasagnePowered.__init__(self, [mean_network.output_layer, l_log_std])
def __init__( self, env_spec, hidden_sizes=(32, 32), learn_std=True, init_std=1.0, adaptive_std=False, std_share_network=False, std_hidden_sizes=(32, 32), min_std=1e-6, std_hidden_nonlinearity=NL.tanh, hidden_nonlinearity=NL.tanh, output_nonlinearity=None, mean_network=None, std_network=None, dist_cls=DiagonalGaussian, aux_pred_step=3, aux_pred_dim=4, skip_last=-1, copy_output=False, ): """ :param env_spec: :param hidden_sizes: list of sizes for the fully-connected hidden layers :param learn_std: Is std trainable :param init_std: Initial std :param adaptive_std: :param std_share_network: :param std_hidden_sizes: list of sizes for the fully-connected layers for std :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues :param std_hidden_nonlinearity: :param hidden_nonlinearity: nonlinearity used for each hidden layer :param output_nonlinearity: nonlinearity for the output layer :param mean_network: custom network for the output mean :param std_network: custom network for the output log std :return: """ Serializable.quick_init(self, locals()) assert isinstance(env_spec.action_space, Box) obs_dim = env_spec.observation_space.flat_dim action_dim = env_spec.action_space.flat_dim # create network if mean_network is None: mean_network = MLP( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, ) self._mean_network = mean_network self._aux_pred_network = MLPAux( aux_pred_step, aux_pred_dim, None, mean_network, skip_last=skip_last, copy_output=copy_output, ) # compile training function aux_target_var = TT.matrix('aux_targets') prediction = self._aux_pred_network._output loss = lasagne.objectives.squared_error(prediction, aux_target_var) loss = loss.mean() params = self._aux_pred_network.get_params(trainable=True) updates = lasagne.updates.adam(loss, params, learning_rate=0.001) self.aux_train_fn = T.function( [self._aux_pred_network.input_layer.input_var, aux_target_var], loss, updates=updates) self.aux_loss = T.function( [self._aux_pred_network.input_layer.input_var, aux_target_var], loss) l_mean = mean_network.output_layer obs_var = mean_network.input_layer.input_var if std_network is not None: l_log_std = std_network.output_layer else: if adaptive_std: std_network = MLP( input_shape=(obs_dim, ), input_layer=mean_network.input_layer, output_dim=action_dim, hidden_sizes=std_hidden_sizes, hidden_nonlinearity=std_hidden_nonlinearity, output_nonlinearity=None, ) l_log_std = std_network.output_layer else: l_log_std = ParamLayer( mean_network.input_layer, num_units=action_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) self.min_std = min_std mean_var, log_std_var, aux_pred_var = L.get_output( [l_mean, l_log_std, self._aux_pred_network.output_layer]) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(min_std)) self._mean_var, self._log_std_var, self._aux_pred_var = mean_var, log_std_var, aux_pred_var self._l_mean = l_mean self._l_log_std = l_log_std self._dist = dist_cls(action_dim) LasagnePowered.__init__( self, [l_mean, l_log_std, self._aux_pred_network.output_layer]) super(GaussianMLPAuxPolicy, self).__init__(env_spec) self._f_dist = ext.compile_function( inputs=[obs_var], outputs=[mean_var, log_std_var], ) self._f_auxpred = ext.compile_function( inputs=[self._aux_pred_network.input_layer.input_var], outputs=[prediction], )
def __init__( self, env_spec, env, pkl_paths=(), json_paths=(), npz_paths=(), trainable_old=True, external_selector=False, hidden_sizes_selector=(10, 10), learn_std=True, init_std=1.0, adaptive_std=False, std_share_network=False, std_hidden_sizes=(32, 32), std_hidden_nonlinearity=NL.tanh, hidden_nonlinearity=NL.tanh, output_nonlinearity=None, min_std=1e-4, ): """ :param pkl_paths: tuple/list of pkl paths :param json_paths: tuple/list of json paths :param npz_paths: tuple/list of npz paths :param trainable_old: Are the old policies still trainable :param external_selector: is the linear combination of the old policies outputs fixed externally :param hidden_sizes: list of sizes for the fully-connected hidden layers :param learn_std: Is std trainable :param init_std: Initial std :param adaptive_std: :param std_share_network: :param std_hidden_sizes: list of sizes for the fully-connected layers for std :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues :param std_hidden_nonlinearity: :param hidden_nonlinearity: nonlinearity used for each hidden layer :param output_nonlinearity: nonlinearity for the output layer :param mean_network: custom network for the output mean :param std_network: custom network for the output log std """ # define where are the old policies to use and what to do with them: self.trainable_old = trainable_old # whether to keep training the old policies loaded here self.pkl_paths = pkl_paths self.json_paths = json_paths self.npz_paths = npz_paths self.selector_dim = max( len(json_paths), len(pkl_paths)) # pkl could be zero if giving npz # if not use a selector NN here, just externally fixed selector variable: self.external_selector = external_selector # whether to use the selectorNN defined here or the pre_fix_selector self.pre_fix_selector = np.zeros( (self.selector_dim) ) # if this is not empty when using reset() it will use this selector self.selector_fix = np.zeros( (self.selector_dim )) # this will hold the selectors variable sampled in reset() self.shared_selector_var = theano.shared( self.selector_fix) # this is for external selector! update that # else, describe the MLP used: self.hidden_sizes_selector = hidden_sizes_selector # size of the selector NN defined here self.min_std = min_std self._set_std_to_0 = False self.action_dim = env_spec.action_space.flat_dim # not checking that all the old policies have this act_dim self.old_hidden_sizes = [] # assume json always given for json_path in self.json_paths: data = json.load( open(os.path.join(config.PROJECT_PATH, json_path), 'r')) old_json_policy = data['json_args']["policy"] self.old_hidden_sizes.append(old_json_policy['hidden_sizes']) # retrieve dimensions and check consistency if isinstance(env, MazeEnv) or isinstance(env, GatherEnv): self.obs_robot_dim = env.robot_observation_space.flat_dim self.obs_maze_dim = env.maze_observation_space.flat_dim elif isinstance(env, NormalizedEnv): if isinstance(env.wrapped_env, MazeEnv) or isinstance( env.wrapped_env, GatherEnv): self.obs_robot_dim = env.wrapped_env.robot_observation_space.flat_dim self.obs_maze_dim = env.wrapped_env.maze_observation_space.flat_dim else: self.obs_robot_dim = env.wrapped_env.observation_space.flat_dim self.obs_maze_dim = 0 else: self.obs_robot_dim = env.observation_space.flat_dim self.obs_maze_dim = 0 # print("the dims of the env are(rob/maze): ", self.obs_robot_dim, self.obs_maze_dim) all_obs_dim = env_spec.observation_space.flat_dim assert all_obs_dim == self.obs_robot_dim + self.obs_maze_dim Serializable.quick_init(self, locals()) assert isinstance(env_spec.action_space, Box) if self.external_selector: # in case we want to fix the selector externally l_all_obs_var = L.InputLayer( shape=(None, ) + (self.obs_robot_dim + self.obs_maze_dim, )) all_obs_var = l_all_obs_var.input_var l_selection = ParamLayer(incoming=l_all_obs_var, num_units=self.selector_dim, param=self.shared_selector_var, trainable=False) selection_var = L.get_output(l_selection) else: # create network with softmax output: it will be the selector! selector_network = MLP( input_shape=(self.obs_robot_dim + self.obs_maze_dim, ), output_dim=self.selector_dim, hidden_sizes=self.hidden_sizes_selector, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=NL.softmax, ) l_all_obs_var = selector_network.input_layer all_obs_var = selector_network.input_layer.input_var # collect the output to select the behavior of the robot controller (equivalent to selectors) l_selection = selector_network.output_layer selection_var = L.get_output(l_selection) # split all_obs into the robot and the maze obs --> ROBOT goes first!! l_obs_robot = CropLayer(l_all_obs_var, start_index=None, end_index=self.obs_robot_dim) l_obs_maze = CropLayer(l_all_obs_var, start_index=self.obs_robot_dim, end_index=None) obs_robot_var = all_obs_var[:, :self.obs_robot_dim] obs_maze_var = all_obs_var[:, self.obs_robot_dim:] # create the action networks self.old_l_means = [ ] # I do this self in case I wanna access it from reset self.old_l_log_stds = [] self.old_layers = [] for i in range(self.selector_dim): mean_network = MLP( input_layer=l_obs_robot, output_dim=self.action_dim, hidden_sizes=self.old_hidden_sizes[i], hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, name="meanMLP{}".format(i), ) self.old_l_means.append(mean_network.output_layer) self.old_layers += mean_network.layers l_log_std = ParamLayer( incoming=mean_network.input_layer, num_units=self.action_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std{}".format(i), trainable=learn_std, ) self.old_l_log_stds.append(l_log_std) self.old_layers += [l_log_std] if not self.trainable_old: for layer in self.old_layers: for param, tags in layer.params.items( ): # params of layer are OrDict: key=the shared var, val=tags tags.remove("trainable") if self.json_paths and self.npz_paths: old_params_dict = {} for i, npz_path in enumerate(self.npz_paths): params_dict = dict( np.load(os.path.join(config.PROJECT_PATH, npz_path))) renamed_warm_params_dict = {} for key in params_dict.keys(): if key == 'output_log_std.param': old_params_dict['output_log_std{}.param'.format( i)] = params_dict[key] elif 'meanMLP_' == key[:8]: old_params_dict['meanMLP{}_'.format(i) + key[8:]] = params_dict[key] else: old_params_dict['meanMLP{}_'.format(i) + key] = params_dict[key] self.set_old_params(old_params_dict) elif self.pkl_paths: old_params_dict = {} for i, pkl_path in enumerate(self.pkl_paths): data = joblib.load(os.path.join(config.PROJECT_PATH, pkl_path)) params = data['policy'].get_params_internal() for param in params: if param.name == 'output_log_std.param': old_params_dict['output_log_std{}.param'.format( i)] = param.get_value() elif 'meanMLP_' == param.name[:8]: old_params_dict['meanMLP{}_'.format(i) + param.name[8:]] = param.get_value() else: old_params_dict['meanMLP{}_'.format(i) + param.name] = param.get_value() self.set_old_params(old_params_dict) # new layers actually selecting the correct output l_mean = SumProdLayer(self.old_l_means + [l_selection]) l_log_std = SumProdLayer(self.old_l_log_stds + [l_selection]) mean_var, log_std_var = L.get_output([l_mean, l_log_std]) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(self.min_std)) self._l_mean = l_mean self._l_log_std = l_log_std self._dist = DiagonalGaussian(self.action_dim) LasagnePowered.__init__(self, [l_mean, l_log_std]) super(GaussianMLPPolicy_multi_hier, self).__init__(env_spec) self._f_old_means = ext.compile_function( inputs=[all_obs_var], outputs=[ L.get_output(l_old_mean) for l_old_mean in self.old_l_means ]) self._f_all_inputs = ext.compile_function( inputs=[all_obs_var], outputs=[ L.get_output(l_old_mean) for l_old_mean in self.old_l_means ] + [selection_var]) self._f_dist = ext.compile_function( inputs=[all_obs_var], outputs=[mean_var, log_std_var], ) # if I want to monitor the selector output self._f_select = ext.compile_function( inputs=[all_obs_var], outputs=selection_var, )
def __init__( self, env_spec, latent_dim=2, latent_name='bernoulli', bilinear_integration=False, resample=False, hidden_sizes=(32, 32), learn_std=True, init_std=1.0, adaptive_std=False, std_share_network=False, std_hidden_sizes=(32, 32), std_hidden_nonlinearity=NL.tanh, hidden_nonlinearity=NL.tanh, output_nonlinearity=None, min_std=1e-4, ): """ :param latent_dim: dimension of the latent variables :param latent_name: distribution of the latent variables :param bilinear_integration: Boolean indicator of bilinear integration or simple concatenation :param resample: Boolean indicator of resampling at every step or only at the start of the rollout (or whenever agent is reset, which can happen several times along the rollout with rollout in utils_snn) """ self.latent_dim = latent_dim ##could I avoid needing this self for the get_action? self.latent_name = latent_name self.bilinear_integration = bilinear_integration self.resample = resample self.min_std = min_std self.hidden_sizes = hidden_sizes self.pre_fix_latent = np.array( [] ) # if this is not empty when using reset() it will use this latent self.latent_fix = np.array( []) # this will hold the latents variable sampled in reset() self._set_std_to_0 = False if latent_name == 'normal': self.latent_dist = DiagonalGaussian(self.latent_dim) self.latent_dist_info = dict(mean=np.zeros(self.latent_dim), log_std=np.zeros(self.latent_dim)) elif latent_name == 'bernoulli': self.latent_dist = Bernoulli(self.latent_dim) self.latent_dist_info = dict(p=0.5 * np.ones(self.latent_dim)) elif latent_name == 'categorical': self.latent_dist = Categorical(self.latent_dim) if self.latent_dim > 0: self.latent_dist_info = dict(prob=1. / self.latent_dim * np.ones(self.latent_dim)) else: self.latent_dist_info = dict(prob=np.ones(self.latent_dim)) else: raise NotImplementedError Serializable.quick_init(self, locals()) assert isinstance(env_spec.action_space, Box) if self.bilinear_integration: obs_dim = env_spec.observation_space.flat_dim + latent_dim +\ env_spec.observation_space.flat_dim * latent_dim else: obs_dim = env_spec.observation_space.flat_dim + latent_dim # here only if concat. action_dim = env_spec.action_space.flat_dim mean_network = MLP( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, name="meanMLP", ) l_mean = mean_network.output_layer obs_var = mean_network.input_layer.input_var if adaptive_std: l_log_std = MLP(input_shape=(obs_dim, ), input_var=obs_var, output_dim=action_dim, hidden_sizes=std_hidden_sizes, hidden_nonlinearity=std_hidden_nonlinearity, output_nonlinearity=None, name="log_stdMLP").output_layer else: l_log_std = ParamLayer( mean_network.input_layer, num_units=action_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) mean_var, log_std_var = L.get_output([l_mean, l_log_std]) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(self.min_std)) self._l_mean = l_mean self._l_log_std = l_log_std self._dist = DiagonalGaussian(action_dim) LasagnePowered.__init__(self, [l_mean, l_log_std]) super(GaussianMLPPolicy_snn, self).__init__(env_spec) self._f_dist = ext.compile_function( inputs=[obs_var], outputs=[mean_var, log_std_var], )
def __init__( self, env_spec, hidden_sizes=(32, 32), learn_std=True, init_std=1.0, adaptive_std=False, std_share_network=False, std_hidden_sizes=(32, 32), min_std=1e-6, npz_path=None, freeze_lst=None, reinit_lst=None, std_hidden_nonlinearity=NL.tanh, hidden_nonlinearity=NL.tanh, output_nonlinearity=None, mean_network=None, std_network=None, dist_cls=DiagonalGaussian, ): """ :param env_spec: :param hidden_sizes: list of sizes for the fully-connected hidden layers :param learn_std: Is std trainable :param init_std: Initial std :param adaptive_std: :param std_share_network: :param std_hidden_sizes: list of sizes for the fully-connected layers for std :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues :param std_hidden_nonlinearity: :param hidden_nonlinearity: nonlinearity used for each hidden layer :param output_nonlinearity: nonlinearity for the output layer :param mean_network: custom network for the output mean :param std_network: custom network for the output log std :return: """ Serializable.quick_init(self, locals()) # reinit_lst = None assert isinstance(env_spec.action_space, Box) if init_std is None: init_std = 1.0 set_std_params = False else: set_std_params = True obs_dim = env_spec.observation_space.flat_dim action_dim = env_spec.action_space.flat_dim # create network if mean_network is None: mean_network = MLP( input_shape=(obs_dim, ), output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, ) self._mean_network = mean_network self._layers_mean = mean_network.layers l_mean = mean_network.output_layer obs_var = mean_network.input_layer.input_var if std_network is not None: l_log_std = std_network.output_layer else: if adaptive_std: std_network = MLP( input_shape=(obs_dim, ), input_layer=mean_network.input_layer, output_dim=action_dim, hidden_sizes=std_hidden_sizes, hidden_nonlinearity=std_hidden_nonlinearity, output_nonlinearity=None, ) l_log_std = std_network.output_layer self._layers_log_std = std_network.layers else: l_log_std = ParamLayer( mean_network.input_layer, num_units=action_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) self._layers_log_std = [l_log_std] self._layers = self._layers_mean + self._layers_log_std self.min_std = min_std mean_var, log_std_var = L.get_output([l_mean, l_log_std]) if self.min_std is not None: log_std_var = TT.maximum(log_std_var, np.log(min_std)) self._mean_var, self._log_std_var = mean_var, log_std_var self._l_mean = l_mean self._l_log_std = l_log_std self._dist = dist_cls(action_dim) LasagnePowered.__init__(self, [l_mean, l_log_std]) super(GaussianMLPPolicy, self).__init__(env_spec) self._f_dist = ext.compile_function( inputs=[obs_var], outputs=[mean_var, log_std_var], ) if npz_path is not None: param_dict = dict( np.load(os.path.join(config.PROJECT_PATH, npz_path))) param_values = param_dict['params'] # todo: don't forget about this if set_std_params: self.set_param_values(param_values) else: self.set_param_values_transfer(param_values) if freeze_lst is not None: assert len(freeze_lst) == len(self._layers) - 1 for layer, should_freeze in zip(self._layers[1:], freeze_lst): if should_freeze: for param, tags in layer.params.items(): tags.remove("trainable") if reinit_lst is not None: assert len(freeze_lst) == len( self._layers) - 1 # since input layer is counted for layer, should_reinit in zip(self._layers[1:], reinit_lst): if should_reinit: print("reinitialized") for v in layer.params: val = v.get_value() if (len(val.shape) < 2): v.set_value(lasagne.init.Constant(0.0)(val.shape)) else: v.set_value(lasagne.init.GlorotUniform()( val.shape)) else: print("did not reinit")
def __init__( self, env_spec, input_latent_vars=None, hidden_sizes=(32, 32), hidden_latent_vars=None, learn_std=True, init_std=1.0, hidden_nonlinearity=NL.tanh, output_nonlinearity=None, ): Serializable.quick_init(self, locals()) assert isinstance(env_spec.action_space, Box) obs_dim = env_spec.observation_space.flat_dim action_dim = env_spec.action_space.flat_dim # create network mean_network = StochasticMLP( input_shape=(obs_dim, ), input_latent_vars=input_latent_vars, output_dim=action_dim, hidden_sizes=hidden_sizes, hidden_latent_vars=hidden_latent_vars, hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, ) l_mean = mean_network.output_layer obs_var = mean_network.input_layer.input_var l_log_std = ParamLayer( mean_network.input_layer, num_units=action_dim, param=lasagne.init.Constant(np.log(init_std)), name="output_log_std", trainable=learn_std, ) self._mean_network = mean_network self._n_latent_layers = len(mean_network.latent_layers) self._l_mean = l_mean self._l_log_std = l_log_std LasagnePowered.__init__(self, [l_mean, l_log_std]) super(StochasticGaussianMLPPolicy, self).__init__(env_spec) outputs = self.dist_info_sym(mean_network.input_var) latent_keys = sorted( set(outputs.keys()).difference({"mean", "log_std"})) extras = get_full_output([self._l_mean, self._l_log_std] + self._mean_network.latent_layers, )[1] latent_distributions = [ extras[layer]["distribution"] for layer in self._mean_network.latent_layers ] self._latent_keys = latent_keys self._latent_distributions = latent_distributions self._dist = DiagonalGaussian(action_dim) self._f_dist_info = ext.compile_function( inputs=[obs_var], outputs=outputs, ) self._f_dist_info_givens = None