def show_domain(self, a=0): s = self.state # Draw the environment fig = plt.figure("FiftyChain") if self.circles is None: self.domain_fig = plt.subplot(3, 1, 1) plt.figure(1, (self.chain_size * 2 / 10.0, 2)) self.domain_fig.set_xlim(0, self.chain_size * 2 / 10.0) self.domain_fig.set_ylim(0, 2) # Make the last one double circle self.domain_fig.add_patch( mpatches.Circle( (0.2 + 2 / 10.0 * (self.chain_size - 1), self.Y), self.RADIUS * 1.1, fc="w", )) self.domain_fig.xaxis.set_visible(False) self.domain_fig.yaxis.set_visible(False) self.circles = [ mpatches.Circle((0.2 + 2 / 10.0 * i, self.Y), self.RADIUS, fc="w") for i in range(self.chain_size) ] for i in range(self.chain_size): self.domain_fig.add_patch(self.circles[i]) plt.show() for p in self.circles: p.set_facecolor("w") for p in self.GOAL_STATES: self.circles[p].set_facecolor("g") self.circles[s].set_facecolor("k") fig.canvas.draw() fig.canvas.flush_events()
def _plot_valfun(self, VMat, xlim=None, ylim=None): """ :returns: handle to the figure """ plt.figure("Value Function") # pl.xticks(self.xTicks,self.xTicksLabels, fontsize=12) # pl.yticks(self.yTicks,self.yTicksLabels, fontsize=12) # pl.xlabel(r"$\theta$ (degree)") # pl.ylabel(r"$\dot{\theta}$ (degree/sec)") plt.title("Value Function") if xlim is not None and ylim is not None: extent = [xlim[0], xlim[1], ylim[0], ylim[1]] else: extent = [0, 1, 0, 1] self.valueFunction_fig = plt.imshow( VMat, cmap="ValueFunction", interpolation="nearest", origin="lower", extent=extent, ) norm = colors.Normalize(vmin=VMat.min(), vmax=VMat.max()) self.valueFunction_fig.set_data(VMat) self.valueFunction_fig.set_norm(norm) plt.draw()
def _plot_impl(self, y="return", x="learning_steps", save=False, show=True): labels = rlpy.tools.results.default_labels performance_fig = plt.figure("Performance") res = self.result plt.plot(res[x], res[y], lw=2, markersize=4, marker=MARKERS[0]) plt.xlim(0, res[x][-1] * 1.01) y_arr = np.array(res[y]) m = y_arr.min() M = y_arr.max() delta = M - m if delta > 0: plt.ylim(m - 0.1 * delta - 0.1, M + 0.1 * delta + 0.1) xlabel = labels[x] if x in labels else x ylabel = labels[y] if y in labels else y plt.xlabel(xlabel, fontsize=16) plt.ylabel(ylabel, fontsize=16) if save: path = os.path.join(self.full_path, "{:03}-performance.pdf".format(self.exp_id)) performance_fig.savefig(path, transparent=True, pad_inches=0.1) if show: plt.ioff() plt.show()
def show_domain(self, a): s = self.state # Plot the car x, y, speed, heading = s car_xmin = x - self.REAR_WHEEL_RELATIVE_LOC car_ymin = y - self.CAR_WIDTH / 2 if self.domain_fig is None: # Need to initialize the figure self.domain_fig = plt.figure() # Goal plt.gca().add_patch( plt.Circle(self.GOAL, radius=self.GOAL_RADIUS, color="g", alpha=0.4)) plt.xlim([self.XMIN, self.XMAX]) plt.ylim([self.YMIN, self.YMAX]) plt.gca().set_aspect("1") # Car if self.car_fig is not None: plt.gca().patches.remove(self.car_fig) self.car_fig = mpatches.Rectangle([car_xmin, car_ymin], self.CAR_LENGTH, self.CAR_WIDTH, alpha=0.4) rotation = (mpl.transforms.Affine2D().rotate_deg_around( x, y, heading * 180 / np.pi) + plt.gca().transData) self.car_fig.set_transform(rotation) plt.gca().add_patch(self.car_fig) plt.draw()
def _init_domain_vis(self): self.domain_fig = plt.figure("MountainCar") self.domain_ax = self.domain_fig.add_subplot(111) # plot mountain mountain_x = np.linspace(self.X_MIN, self.X_MAX, 1000) mountain_y = np.sin(3 * mountain_x) self.domain_ax.fill_between(mountain_x, min(mountain_y) - self.CAR_HEIGHT * 2, mountain_y, color="g") self.domain_ax.set_xlim([self.X_MIN - 0.2, self.X_MAX]) self.domain_ax.set_ylim([ min(mountain_y) - self.CAR_HEIGHT * 2, max(mountain_y) + self.CAR_HEIGHT * 2, ]) # plot car self.car = lines.Line2D([], [], linewidth=20, color="b", alpha=0.8) self.domain_ax.add_line(self.car) # Goal self.domain_ax.plot(self.GOAL, np.sin(3 * self.GOAL), "yd", markersize=10.0) self.domain_ax.axis("off") self.domain_fig.show()
def _plot_valfun(self, VMat): """ :returns: handle to the figure .. warning:: The calling function MUST call plt.draw() or the figures will not be updated. """ if self.value_fn_fig is None or self.value_fn_img is None: maxV = VMat.max() minV = VMat.min() self.value_fn_fig = plt.figure("CartPole Value Function") self.value_fn_ax = self.value_fn_fig.add_subplot(111) self.value_fn_img = self.value_fn_ax.imshow( VMat, cmap="ValueFunction", interpolation="nearest", origin="lower", vmin=minV, vmax=maxV, ) self._init_ticks_common(self.value_fn_ax) self.value_fn_ax.set_title("CartPole Value Function") norm = colors.Normalize(vmin=VMat.min(), vmax=VMat.max()) self.value_fn_img.set_data(VMat) self.value_fn_img.set_norm(norm) self.value_fn_fig.canvas.draw()
def _plot_policy(self, piMat): """ :returns: handle to the figure .. warning:: The calling function MUST call plt.draw() or the figures will not be updated. """ if self.policy_fig is None: self.policy_fig = plt.figure("CartPole Policy") self.policy_ax = self.policy_fig.add_subplot(1, 1, 1) self.policy_img = self.policy_ax.imshow( piMat, cmap="InvertedPendulumActions", interpolation="nearest", origin="lower", vmin=0, vmax=self.num_actions, ) self._init_ticks_common(self.policy_ax) self.policy_ax.set_title("CartPole Policy") self.policy_img.set_data(piMat) self.policy_fig.canvas.draw()
def show_domain(self, a=0, s=None): """ shows a live graph of each concentration """ # only update the graph every couple of steps, otherwise it is # extremely slow if self.t % self.show_domain_every != 0 and not self.t >= self.episode_cap: return n = self.state_space_dims + 1 names = list(self.state_names) + ["Action"] colors = ["b", "b", "b", "b", "r", "g", "k"] handles = getattr(self, "_state_graph_handles", None) fig = plt.figure("HIVTreatment", figsize=(12, 10)) if handles is None: handles = [] f, axes = plt.subplots(n, sharex=True, num="HIVTreatment", figsize=(12, 10)) f.subplots_adjust(hspace=0.1) for i in range(n): ax = axes[i] d = np.arange(self.episode_cap + 1) * 5 ax.set_ylabel(names[i]) ax.locator_params(tight=True, nbins=4) handles.append(ax.plot(d, self.episode_data[i], color=colors[i])[0]) self._state_graph_handles = handles ax.set_xlabel("Days") for i in range(n): handles[i].set_ydata(self.episode_data[i]) ax = handles[i].axes ax.relim() ax.autoscale_view() fig.canvas.draw() fig.canvas.flush_events()
def _plot_policy(self, piMat, title="Policy", var="policy_fig", xlim=None, ylim=None): """ :returns: handle to the figure """ if getattr(self, var, None) is None: plt.figure(title) # define the colormap cmap = plt.cm.jet # extract all colors from the .jet map cmaplist = [cmap(i) for i in range(cmap.N)] # force the first color entry to be grey cmaplist[0] = (0.5, 0.5, 0.5, 1.0) # create the new map cmap = cmap.from_list("Custom cmap", cmaplist, cmap.N) # define the bins and normalize bounds = np.linspace(0, self.num_actions, self.num_actions + 1) norm = mpl.colors.BoundaryNorm(bounds, cmap.N) if xlim is not None and ylim is not None: extent = [xlim[0], xlim[1], ylim[0], ylim[1]] else: extent = [0, 1, 0, 1] self.__dict__[var] = plt.imshow( piMat, interpolation="nearest", origin="lower", cmap=cmap, norm=norm, extent=extent, ) # pl.xticks(self.xTicks,self.xTicksLabels, fontsize=12) # pl.yticks(self.yTicks,self.yTicksLabels, fontsize=12) # pl.xlabel(r"$\theta$ (degree)") # pl.ylabel(r"$\dot{\theta}$ (degree/sec)") plt.title(title) plt.colorbar() plt.figure(title) self.__dict__[var].set_data(piMat) plt.draw()
def _init_vf_vis(self): fig = plt.figure("Value Function") self.vf_ax = fig.add_subplot(111, projection="3d") x_space = np.linspace(self.X_MIN, self.X_MAX, self.X_DISCR) xdot_space = np.linspace(self.XDOT_MIN, self.XDOT_MAX, self.XDOT_DISCR) self.vf_x, self.vf_xdot = np.meshgrid(x_space, xdot_space) self.vf_ax.set_xlabel(r"$x$") self.vf_ax.set_ylabel(r"$\dot x$") return fig
def show_domain(self, a=0): # Draw the environment s = self.state world = np.zeros((self.blocks, self.blocks), "uint8") undrawn_blocks = np.arange(self.blocks) while len(undrawn_blocks): A = undrawn_blocks[0] B = s[A] undrawn_blocks = undrawn_blocks[1:] if B == A: # => A is on Table world[0, A] = A + 1 # 0 is white thats why! else: # See if B is already drawn i, j = findElemArray2D(B + 1, world) if len(i): world[i + 1, j] = A + 1 # 0 is white thats why! else: # Put it in the back of the list undrawn_blocks = np.hstack((undrawn_blocks, [A])) if self.domain_fig is None: plt.figure("Domain") self.domain_fig = plt.imshow( world, cmap="BlocksWorld", origin="lower", interpolation="nearest") # ,vmin=0,vmax=self.blocks) plt.xticks(np.arange(self.blocks), fontsize=FONTSIZE) plt.yticks(np.arange(self.blocks), fontsize=FONTSIZE) # pl.tight_layout() plt.axis("off") plt.show() else: self.domain_fig.set_data(world) plt.figure("Domain").canvas.draw() plt.figure("Domain").canvas.flush_events()
def show_domain(self, a=0): # Draw the environment if self.circles is None: self.fig = plt.figure(1, (self.chain_size * 2, 2)) ax = self.fig.add_axes([0, 0, 1, 1], frameon=False, aspect=1.0) ax.set_xlim(0, self.chain_size * 2) ax.set_ylim(0, 2) # Make the last one double circle ax.add_patch( mpatches.Circle((1 + 2 * (self.chain_size - 1), self.Y), self.RADIUS * 1.1, fc="w")) self.circles = [ mpatches.Circle((1 + 2 * i, self.Y), self.RADIUS, fc="w") for i in range(self.chain_size) ] for i in range(self.chain_size): ax.add_patch(self.circles[i]) if i < self.chain_size - 1: from_a_to_b( 1 + 2 * i + self.SHIFT, self.Y + self.SHIFT, 1 + 2 * (i + 1) - self.SHIFT, self.Y + self.SHIFT, ) if i < self.chain_size - 2: from_a_to_b( 1 + 2 * (i + 1) - self.SHIFT, self.Y - self.SHIFT, 1 + 2 * i + self.SHIFT, self.Y - self.SHIFT, "r", ) from_a_to_b( 0.75, self.Y - 1.5 * self.SHIFT, 0.75, self.Y + 1.5 * self.SHIFT, "r", connectionstyle="arc3,rad=-1.2", ) self.fig.show() for i, p in enumerate(self.circles): if self.state[0] == i: p.set_facecolor("k") else: p.set_facecolor("w") self.fig.canvas.draw()
def _init_domain_figure(self): # Initialize the figure self.domain_fig = plt.figure("CartPole {}".format(self.NAME)) self.domain_ax = self.domain_fig.add_axes([0, 0, 1, 1], frameon=True, aspect=1.0) self.pendulum_arm = lines.Line2D([], [], linewidth=self.PEND_WIDTH, color="black") self.cart_box = mpatches.Rectangle( [0, self.PENDULUM_PIVOT_Y - self.RECT_HEIGHT / 2], self.RECT_WIDTH, self.RECT_HEIGHT, alpha=0.4, ) self.cart_blob = mpatches.Rectangle( [0, self.PENDULUM_PIVOT_Y - self.BLOB_WIDTH / 2], self.BLOB_WIDTH, self.BLOB_WIDTH, alpha=0.4, ) self.domain_ax.add_patch(self.cart_box) self.domain_ax.add_line(self.pendulum_arm) self.domain_ax.add_patch(self.cart_blob) # Draw Ground groundPath = mpath.Path(self.GROUND_VERTS) groundPatch = mpatches.PathPatch(groundPath, hatch="//") self.domain_ax.add_patch(groundPatch) self.time_text = self.domain_ax.text(self.POSITION_LIMITS[1], self.LENGTH, "") self.reward_text = self.domain_ax.text(self.POSITION_LIMITS[0], self.LENGTH, "") # Allow room for pendulum to swing without getting cut off on graph viewable_dist = self.LENGTH + 0.5 if (self.POSITION_LIMITS[0] < -100 * self.LENGTH or self.POSITION_LIMITS[1] > 100 * self.LENGTH): # We have huge position limits, limit the figure width so # cart is still visible self.domain_ax.set_xlim(-viewable_dist, viewable_dist) else: self.domain_ax.set_xlim( self.POSITION_LIMITS[0] - viewable_dist, self.POSITION_LIMITS[1] + viewable_dist, ) self.domain_ax.set_ylim(-viewable_dist, viewable_dist) self.domain_ax.set_aspect("equal") plt.show()
def show_domain(self, a): s = self.state # Draw the environment fig = plt.figure("IntruderMonitoring") if self.domain_fig is None: self.domain_fig = plt.imshow( self.map, cmap="IntruderMonitoring", interpolation="nearest", vmin=0, vmax=3, ) plt.xticks(np.arange(self.COLS), fontsize=FONTSIZE) plt.yticks(np.arange(self.ROWS), fontsize=FONTSIZE) plt.show() if self.ally_fig is not None: self.ally_fig.pop(0).remove() self.intruder_fig.pop(0).remove() s_ally = s[0:self.NUMBER_OF_AGENTS * 2].reshape((-1, 2)) s_intruder = s[self.NUMBER_OF_AGENTS * 2:].reshape((-1, 2)) self.ally_fig = plt.plot( s_ally[:, 1], s_ally[:, 0], "bo", markersize=30.0, alpha=0.7, markeredgecolor="k", markeredgewidth=2, ) self.intruder_fig = plt.plot( s_intruder[:, 1], s_intruder[:, 0], "g>", color="gray", markersize=30.0, alpha=0.7, markeredgecolor="k", markeredgewidth=2, ) fig.canvas.draw() fig.canvas.flush_events()
def show_domain(self, a=None): if a is not None: a = self.actions[a] T = np.empty((self.d, 2)) T[:, 0] = np.cos(self.theta) T[:, 1] = np.sin(self.theta) R = np.dot(self.P, T) R1 = R - 0.5 * self.lengths[:, None] * T R2 = R + 0.5 * self.lengths[:, None] * T Rx = np.hstack([R1[:, 0], R2[:, 0]]) + self.pos_cm[0] Ry = np.hstack([R1[:, 1], R2[:, 1]]) + self.pos_cm[1] fig = plt.figure("Swimmer") if self.swimmer_lines is None: plt.plot(0.0, 0.0, "ro") self.swimmer_lines = plt.plot(Rx, Ry)[0] self.action_text = plt.text(-2, -8, str(a)) plt.xlim(-5, 15) plt.ylim(-10, 10) else: self.swimmer_lines.set_data(Rx, Ry) self.action_text.set_text(str(a)) fig.canvas.draw() fig.canvas.flush_events()
def show_domain(self, a=0): s = self.state plt.figure("Domain") if self.networkGraph is None: # or self.networkPos is None: self.networkGraph = nx.Graph() # enumerate all computer_ids, simulatenously iterating through # neighbors list and compstatus for computer_id, (neighbors, compstatus) in enumerate(zip(self.NEIGHBORS, s)): # Add a node to network for each computer self.networkGraph.add_node(computer_id, node_color="w") for uniqueEdge in self.UNIQUE_EDGES: self.networkGraph.add_edge( uniqueEdge[0], uniqueEdge[1], edge_color="k") # Add an edge between each neighbor self.networkPos = nx.circular_layout(self.networkGraph) nx.draw_networkx_nodes(self.networkGraph, self.networkPos, node_color="w") nx.draw_networkx_edges(self.networkGraph, self.networkPos, edge_color="k") nx.draw_networkx_labels(self.networkGraph, self.networkPos) plt.show() else: plt.clf() blackEdges = [] redEdges = [] greenNodes = [] redNodes = [] for computer_id, (neighbors, compstatus) in enumerate(zip(self.NEIGHBORS, s)): if compstatus == self.RUNNING: greenNodes.append(computer_id) else: redNodes.append(computer_id) # Iterate through all unique edges for uniqueEdge in self.UNIQUE_EDGES: if (s[uniqueEdge[0]] == self.RUNNING and s[uniqueEdge[1]] == self.RUNNING): # Then both computers are working blackEdges.append(uniqueEdge) else: # If either computer is BROKEN, make the edge red redEdges.append(uniqueEdge) # "if redNodes", etc. - only draw things in the network if these lists aren't empty / null if redNodes: nx.draw_networkx_nodes( self.networkGraph, self.networkPos, nodelist=redNodes, node_color="r", linewidths=2, ) if greenNodes: nx.draw_networkx_nodes( self.networkGraph, self.networkPos, nodelist=greenNodes, node_color="w", linewidths=2, ) if blackEdges: nx.draw_networkx_edges( self.networkGraph, self.networkPos, edgelist=blackEdges, edge_color="k", width=2, style="solid", ) if redEdges: nx.draw_networkx_edges( self.networkGraph, self.networkPos, edgelist=redEdges, edge_color="k", width=2, style="dotted", ) nx.draw_networkx_labels(self.networkGraph, self.networkPos) plt.figure("Domain").canvas.draw() plt.figure("Domain").canvas.flush_events()
def show_domain(self, a=0): s = self.state if self.domain_fig is None: plt.figure("Domain") self.domain_fig = plt.figure( 1, (UAVLocation.SIZE * self.dist_between_locations + 1, self.NUM_UAV + 1), ) plt.show() plt.clf() # Draw the environment # Allocate horizontal 'lanes' for UAVs to traverse # Formerly, we checked if this was the first time plotting; wedge shapes cannot be removed from # matplotlib environment, nor can their properties be changed, without clearing the figure # Thus, we must redraw the figure on each timestep # if self.location_rect_vis is None: # Figure with x width corresponding to number of location states, UAVLocation.SIZE # and rows (lanes) set aside in y for each UAV (NUM_UAV total lanes). # Add buffer of 1 self.subplot_axes = self.domain_fig.add_axes([0, 0, 1, 1], frameon=False, aspect=1.0) crashLocationX = 2 * (self.dist_between_locations) * ( UAVLocation.SIZE - 1) self.subplot_axes.set_xlim(0, 1 + crashLocationX + self.RECT_GAP) self.subplot_axes.set_ylim(0, 1 + self.NUM_UAV) self.subplot_axes.xaxis.set_visible(False) self.subplot_axes.yaxis.set_visible(False) # Assign coordinates of each possible uav location on figure self.location_coord = [ 0.5 + self.LOCATION_WIDTH / 2 + (self.dist_between_locations) * i for i in range(UAVLocation.SIZE - 1) ] self.location_coord.append(crashLocationX + self.LOCATION_WIDTH / 2) # Create rectangular patches at each of those locations self.location_rect_vis = [ mpatches.Rectangle( [0.5 + (self.dist_between_locations) * i, 0], self.LOCATION_WIDTH, self.NUM_UAV * 2, fc="w", ) for i in range(UAVLocation.SIZE - 1) ] self.location_rect_vis.append( mpatches.Rectangle([crashLocationX, 0], self.LOCATION_WIDTH, self.NUM_UAV * 2, fc="w")) [ self.subplot_axes.add_patch(self.location_rect_vis[i]) for i in range(4) ] self.comms_line = [ lines.Line2D( [ 0.5 + self.LOCATION_WIDTH + (self.dist_between_locations) * i, 0.5 + self.LOCATION_WIDTH + (self.dist_between_locations) * i + self.RECT_GAP, ], [self.NUM_UAV * 0.5 + 0.5, self.NUM_UAV * 0.5 + 0.5], linewidth=3, color="black", visible=False, ) for i in range(UAVLocation.SIZE - 2) ] self.comms_line.append( lines.Line2D( [ 0.5 + self.LOCATION_WIDTH + (self.dist_between_locations) * 2, crashLocationX, ], [self.NUM_UAV * 0.5 + 0.5, self.NUM_UAV * 0.5 + 0.5], linewidth=3, color="black", visible=False, )) # Create location text below rectangles locText = ["Base", "Refuel", "Communication", "Surveillance"] self.location_rect_txt = [ plt.text( 0.5 + self.dist_between_locations * i + 0.5 * self.LOCATION_WIDTH, -0.3, locText[i], ha="center", ) for i in range(UAVLocation.SIZE - 1) ] self.location_rect_txt.append( plt.text( crashLocationX + 0.5 * self.LOCATION_WIDTH, -0.3, locText[UAVLocation.SIZE - 1], ha="center", )) # Initialize list of circle objects uav_x = self.location_coord[UAVLocation.BASE] # Update the member variables storing all the figure objects self.uav_circ_vis = [ mpatches.Circle((uav_x, 1 + uav_id), self.UAV_RADIUS, fc="w") for uav_id in range(0, self.NUM_UAV) ] self.uav_text_vis = [None for uav_id in range(0, self.NUM_UAV)] # f**k self.uav_sensor_vis = [ mpatches.Wedge((uav_x + self.SENSOR_REL_X, 1 + uav_id), self.SENSOR_LENGTH, -30, 30) for uav_id in range(0, self.NUM_UAV) ] self.uav_actuator_vis = [ mpatches.Wedge((uav_x, 1 + uav_id + self.ACTUATOR_REL_Y), self.ACTUATOR_HEIGHT, 60, 120) for uav_id in range(0, self.NUM_UAV) ] # For each UAV: # Draw a circle, with text inside = amt fuel remaining # Triangle on top of UAV for comms, black = good, red = bad # Triangle in front of UAV for surveillance sStruct = self.state2Struct(s) for uav_id in range(0, self.NUM_UAV): # Assign all the variables corresponding to this UAV for this iteration; # this could alternately be done with a UAV class whose objects keep track # of these variables. Elect to use lists here since ultimately the state # must be a vector anyway. # State index corresponding to the location of this uav uav_location = sStruct.locations[uav_id] uav_fuel = sStruct.fuel[uav_id] uav_sensor = sStruct.sensor[uav_id] uav_actuator = sStruct.actuator[uav_id] # Assign coordinates on figure where UAV should be drawn uav_x = self.location_coord[uav_location] uav_y = 1 + uav_id # Update plot wit this UAV self.uav_circ_vis[uav_id] = mpatches.Circle((uav_x, uav_y), self.UAV_RADIUS, fc="w") self.uav_text_vis[uav_id] = plt.text(uav_x - 0.05, uav_y - 0.05, uav_fuel) if uav_sensor == SensorState.RUNNING: objColor = "black" else: objColor = "red" self.uav_sensor_vis[uav_id] = mpatches.Wedge( (uav_x + self.SENSOR_REL_X, uav_y), self.SENSOR_LENGTH, -30, 30, color=objColor, ) if uav_actuator == ActuatorState.RUNNING: objColor = "black" else: objColor = "red" self.uav_actuator_vis[uav_id] = mpatches.Wedge( (uav_x, uav_y + self.ACTUATOR_REL_Y), self.ACTUATOR_HEIGHT, 60, 120, color=objColor, ) self.subplot_axes.add_patch(self.uav_circ_vis[uav_id]) self.subplot_axes.add_patch(self.uav_sensor_vis[uav_id]) self.subplot_axes.add_patch(self.uav_actuator_vis[uav_id]) numHealthySurveil = np.sum( np.logical_and(sStruct.locations == UAVLocation.SURVEIL, sStruct.sensor)) # We have comms coverage: draw a line between comms states to show this if any(sStruct.locations == UAVLocation.COMMS): for i in range(len(self.comms_line)): self.comms_line[i].set_visible(True) self.comms_line[i].set_color("black") self.subplot_axes.add_line(self.comms_line[i]) # We also have UAVs in surveillance; color the comms line black if numHealthySurveil > 0: self.location_rect_vis[len(self.location_rect_vis) - 1].set_color("green") plt.figure("Domain").canvas.draw() plt.figure("Domain").canvas.flush_events() sleep(0.5)