コード例 #1
0
    def testModel(self):

        Y = np.random.random((10))
        X = np.random.random((10, 100))
        kwargs = {}
        kwargs["Y"] = Y
        kwargs["X"] = X
        kwargs["regparam"] = 1
        learner = RLS(**kwargs)
        model = learner.predictor
        print
        #print 'Ten data points, single label '
        model = mod.LinearPredictor(np.random.random((100)))
        self.all_pred_cases(model)

        model = mod.LinearPredictor(np.random.random((100, 2)))
        self.all_pred_cases(model)

        #model = mod.LinearPredictor(np.random.random((1, 2)))
        #self.all_pred_cases(model)

        kwargs["kernel"] = "GaussianKernel"
        Y = np.random.random((10))
        kwargs["Y"] = Y
        learner = RLS(**kwargs)
        model = learner.predictor
        self.all_pred_cases(model)

        kwargs["kernel"] = "GaussianKernel"
        Y = np.random.random((10, 2))
        kwargs["Y"] = Y
        learner = RLS(**kwargs)
        model = learner.predictor
        self.all_pred_cases(model)
コード例 #2
0
 def out_of_sample_kfold_cv(self, rowfolds, colfolds):
     """
     Computes the out-of-sample cross-validation predictions with given
     subset of rows and columns. By out-of-sample we denote the
     setting, where when leaving out an entry (a,b) in Y, we also remove
     from training set all instances of type (a,x) and (x,b).
     
     Returns
     -------
     F : array, shape = [n_samples1*n_samples2]
         Training set labels. Label for (X1[i], X2[j]) maps to
         F[i + j*n_samples1] (column order).
         
     Notes
     -----    
             
     Computational complexity [TODO]
     """
     
     rlsparams = {}
     rlsparams["regparam"] = self.regparam1
     rlsparams["Y"] = self.Y
     rlsparams["bias"] = 0.
     if self.kernelmode:
         rlsparams["X"] = np.array(self.K1)
         rlsparams['kernel'] = 'PrecomputedKernel'
     else:
         rlsparams["X"] = np.array(self.X1)
     ordinary_rls_for_rows = RLS(**rlsparams)
     
     allrowhopreds = np.zeros(self.Y.shape)
     for fold in rowfolds:
         Pfold = ordinary_rls_for_rows.holdout(fold)
         if len(fold) == 1: Pfold = Pfold.reshape((Pfold.shape[0], 1))
         allrowhopreds[fold] = Pfold
     
     rlsparams = {}
     rlsparams["regparam"] = self.regparam2
     rlsparams["Y"] = allrowhopreds.T
     rlsparams["bias"] = 0.
     if self.kernelmode:
         rlsparams["X"] = np.array(self.K2)
         rlsparams['kernel'] = 'PrecomputedKernel'
     else:
         rlsparams["X"] = np.array(self.X2)
     ordinary_rls_for_columns = RLS(**rlsparams)
     
     allcolhopreds = np.zeros(self.Y.shape)
     for fold in colfolds:
         Pfold = ordinary_rls_for_columns.holdout(fold)
         #print(allhopreds.shape, Pfold.shape)
         if len(fold) == 1: Pfold = Pfold.reshape((1, Pfold.shape[0]))
         allcolhopreds[:, fold] = Pfold.T
     
     return allcolhopreds.ravel(order = 'F')
コード例 #3
0
def train_rls():
    X_train, Y_train, X_test, Y_test = load_housing()
    #select randomly 100 basis vectors
    indices = range(X_train.shape[0])
    indices = random.sample(indices, 100)
    basis_vectors = X_train[indices]
    kernel = GaussianKernel(basis_vectors, gamma=0.00003)
    K_train = kernel.getKM(X_train)
    K_rr = kernel.getKM(basis_vectors)
    K_test = kernel.getKM(X_test)
    learner = RLS(K_train,
                  Y_train,
                  basis_vectors=K_rr,
                  kernel="PrecomputedKernel",
                  regparam=0.0003)
    #Leave-one-out cross-validation predictions, this is fast due to
    #computational short-cut
    P_loo = learner.leave_one_out()
    #Test set predictions
    P_test = learner.predict(K_test)
    print("leave-one-out error %f" % sqerror(Y_train, P_loo))
    print("test error %f" % sqerror(Y_test, P_test))
    #Sanity check, can we do better than predicting mean of training labels?
    print("mean predictor %f" %
          sqerror(Y_test,
                  np.ones(Y_test.shape) * np.mean(Y_train)))
コード例 #4
0
ファイル: two_step_rls.py プロジェクト: disc5/RLScore
 def leave_x1_out(self):
     """
     Computes the leave-row-out cross-validation predictions. Here, all instances
     related to a single object from domain 1 are left out together at a time.
     
     Returns
     -------
     F : array, shape = [n_samples1*n_samples2]
         Training set labels. Label for (X1[i], X2[j]) maps to
         F[i + j*n_samples1] (column order).
     """
     
     YU = self.Y * self.U
     
     filteredevals2 = self.evals2 / (self.evals2 + self.regparam2)
     
     foo = np.multiply(YU, filteredevals2.T)
     foo = foo * self.U.T
     foo = np.array(foo)
     rlsparams = {}
     rlsparams["regparam"] = self.regparam1
     rlsparams["Y"] = foo
     rlsparams["bias"] = 0.
     if self.kernelmode:
         rlsparams["X"] = np.array(self.K1)
         rlsparams['kernel'] = 'PrecomputedKernel'
     else:
         rlsparams["X"] = np.array(self.X1)
     ordinary_rls_for_rows = RLS(**rlsparams)
     lro = ordinary_rls_for_rows.leave_one_out().ravel(order = 'F')
     return lro
コード例 #5
0
ファイル: two_step_rls.py プロジェクト: disc5/RLScore
 def leave_x2_out(self):
     """
     Computes the leave-column-out cross-validation predictions. Here, all instances
     related to a single object from domain 2 are left out together at a time.
     
     Returns
     -------
     F : array, shape = [n_samples1*n_samples2]
         Training set labels. Label for (X1[i], X2[j]) maps to
         F[i + j*n_samples1] (column order).
     """
     
     VTY = self.V.T * self.Y
     
     filteredevals1 = self.evals1 / (self.evals1 + self.regparam1)
     
     foo = np.multiply(VTY, filteredevals1)
     foo = self.V * foo
     foo = np.array(foo)
     rlsparams = {}
     rlsparams["regparam"] = self.regparam2
     rlsparams["Y"] = foo.T
     rlsparams["bias"] = 0.
     if self.kernelmode:
         rlsparams["X"] = np.array(self.K2)
         rlsparams['kernel'] = 'PrecomputedKernel'
     else:
         rlsparams["X"] = np.array(self.X2)
     ordinary_rls_for_columns = RLS(**rlsparams)
     lco = ordinary_rls_for_columns.leave_one_out().T.ravel(order = 'F')
     return lco
コード例 #6
0
ファイル: predictor4.py プロジェクト: disc5/RLScore
def train_rls():
    X_train, Y_train, X_test, Y_test = load_housing()
    #select randomly 20 basis vectors
    indices = range(X_train.shape[0])
    indices = random.sample(indices, 20)
    basis_vectors = X_train[indices]
    learner = RLS(X_train,
                  Y_train,
                  basis_vectors=basis_vectors,
                  kernel="GaussianKernel",
                  regparam=0.0003,
                  gamma=0.00003)
    #Test set predictions
    P_test = learner.predict(X_test)
    #We can separate the predictor from learner
    predictor = learner.predictor
    #And do the same predictions
    P_test = predictor.predict(X_test)
    #Let's get the coefficients of the predictor
    A = predictor.A
    print("A-coefficients " + str(A))
    print("number of coefficients %d" % len(A))
コード例 #7
0
    def x2_kfold_cv(self, folds):
        """
        Computes the leave-column-out cross-validation predictions. Here, all instances
        related to a single object from domain 2 are left out together at a time.
        
        Returns
        -------
        F : array, shape = [n_samples1*n_samples2]
            Training set labels. Label for (X1[i], X2[j]) maps to
            F[i + j*n_samples1] (column order).
        """
        
        VTY = self.V.T @ self.Y
        
        filteredevals1 = self.evals1 / (self.evals1 + self.regparam1)
        
        foo = np.multiply(VTY, filteredevals1)
        foo = self.V @ foo
        foo = np.array(foo)
        rlsparams = {}
        rlsparams["regparam"] = self.regparam2
        rlsparams["Y"] = foo.T
        rlsparams["bias"] = 0.
        if self.kernelmode:
            rlsparams["X"] = np.array(self.K2)
            rlsparams['kernel'] = 'PrecomputedKernel'
        else:
            rlsparams["X"] = np.array(self.X2)
        ordinary_rls_for_columns = RLS(**rlsparams)
        
        allhopreds = np.zeros(foo.shape)
        for fold in folds:
            Pfold = ordinary_rls_for_columns.holdout(fold)
            #print(allhopreds.shape, Pfold.shape)
            if len(fold) == 1: Pfold = Pfold.reshape((1, Pfold.shape[0]))
            allhopreds[:, fold] = Pfold.T

        return allhopreds.ravel(order = 'F')
コード例 #8
0
 def x1_kfold_cv(self, folds):
     """
     Computes the leave-row-out cross-validation predictions. Here, all instances
     related to a single object from domain 1 are left out together at a time.
     
     Returns
     -------
     F : array, shape = [n_samples1*n_samples2]
         Training set labels. Label for (X1[i], X2[j]) maps to
         F[i + j*n_samples1] (column order).
     """
     
     YU = self.Y @ self.U
     
     filteredevals2 = self.evals2 / (self.evals2 + self.regparam2)
     
     foo = np.multiply(YU, filteredevals2.T)
     foo = foo @ self.U.T
     foo = np.array(foo)
     rlsparams = {}
     rlsparams["regparam"] = self.regparam1
     rlsparams["Y"] = foo
     rlsparams["bias"] = 0.
     if self.kernelmode:
         rlsparams["X"] = np.array(self.K1)
         rlsparams['kernel'] = 'PrecomputedKernel'
     else:
         rlsparams["X"] = np.array(self.X1)
     ordinary_rls_for_rows = RLS(**rlsparams)
     
     allhopreds = np.zeros(foo.shape)
     for fold in folds:
         Pfold = ordinary_rls_for_rows.holdout(fold)
         if len(fold) == 1: Pfold = Pfold.reshape((Pfold.shape[0], 1))
         allhopreds[fold] = Pfold
     
     return allhopreds.ravel(order = 'F')
コード例 #9
0
 def test_two_step_rls(self):
     
     regparam1 = 0.001
     regparam2 = 10
     #regparam1 = 1
     #regparam2 = 1
     
     K_train1, K_train2, Y_train, K_test1, K_test2, Y_test, X_train1, X_train2, X_test1, X_test2 \
         = self.generate_xortask()
     Y_train = Y_train.ravel(order = 'F')
     Y_test = Y_test.ravel(order = 'F')
     train_rows, train_columns = K_train1.shape[0], K_train2.shape[0]
     #print K_train1.shape, K_train2.shape, K_test1.shape, K_test2.shape, train_rows, train_columns
     trainlabelcount = train_rows * train_columns
     
     #Train linear two-step RLS with data-matrices
     params = {}
     params["regparam1"] = regparam1
     params["regparam2"] = regparam2
     params["X1"] = X_train1
     params["X2"] = X_train2
     params["Y"] = Y_train
     linear_two_step_learner = TwoStepRLS(**params)
     linear_twostepoutofsampleloo = linear_two_step_learner.out_of_sample_loo().reshape((train_rows, train_columns), order = 'F')
     linear_lro = linear_two_step_learner.leave_x1_out()
     linear_lco = linear_two_step_learner.leave_x2_out()
                                                           
     #Train kernel two-step RLS with pre-computed kernel matrices
     params = {}
     params["regparam1"] = regparam1
     params["regparam2"] = regparam2
     params["K1"] = K_train1
     params["K2"] = K_train2
     params["Y"] = Y_train
     kernel_two_step_learner = TwoStepRLS(**params)
     kernel_twostepoutofsampleloo = kernel_two_step_learner.out_of_sample_loo().reshape((train_rows, train_columns), order = 'F')
     kernel_lro = kernel_two_step_learner.leave_x1_out()
     kernel_lco = kernel_two_step_learner.leave_x2_out()
     tspred = kernel_two_step_learner.predict(K_train1, K_train2)
     
     #Train ordinary linear RLS in two steps for a reference
     params = {}
     params["regparam"] = regparam2
     params["X"] = X_train2
     params["Y"] = Y_train.reshape((train_rows, train_columns), order = 'F').T
     params['bias'] = 0
     ordinary_linear_rls_first_step = RLS(**params)
     firststeploo = ordinary_linear_rls_first_step.leave_one_out().T
     params = {}
     params["regparam"] = regparam1
     params["X"] = X_train1
     params["Y"] = firststeploo.reshape((train_rows, train_columns), order = 'F')
     params['bias'] = 0
     ordinary_linear_rls_second_step = RLS(**params)
     secondsteploo_linear_rls = ordinary_linear_rls_second_step.leave_one_out()
     
     #Train ordinary kernel RLS in two steps for a reference
     params = {}
     params["regparam"] = regparam2
     params["X"] = K_train2
     params['kernel'] = 'PrecomputedKernel'
     params["Y"] = Y_train.reshape((train_rows, train_columns), order = 'F').T
     ordinary_kernel_rls_first_step = RLS(**params)
     firststeploo = ordinary_kernel_rls_first_step.leave_one_out().T
     params = {}
     params["regparam"] = regparam1
     params["X"] = K_train1
     params["kernel"] = "PrecomputedKernel"
     params["Y"] = firststeploo.reshape((train_rows, train_columns), order = 'F')
     ordinary_kernel_rls_second_step = RLS(**params)
     secondsteploo_kernel_rls = ordinary_kernel_rls_second_step.leave_one_out()
     
     #Train ordinary kernel RLS in one step with the crazy kernel for a reference
     params = {}
     params["regparam"] = 1.
     crazykernel = la.inv(regparam1 * regparam2 * np.kron(la.inv(K_train2), la.inv(K_train1))
                    + regparam1 * np.kron(np.eye(K_train2.shape[0]), la.inv(K_train1))
                    + regparam2 * np.kron(la.inv(K_train2), np.eye(K_train1.shape[0])))
     params["X"] = crazykernel
     params['kernel'] = 'PrecomputedKernel'
     params["Y"] = Y_train
     ordinary_one_step_kernel_rls_with_crazy_kernel = RLS(**params)
     fooloo = ordinary_one_step_kernel_rls_with_crazy_kernel.leave_one_out()[0]
     allinds = np.arange(trainlabelcount)
     allinds_fortran_shaped = allinds.reshape((train_rows, train_columns), order = 'F')
     hoinds = sorted(allinds_fortran_shaped[0].tolist() + allinds_fortran_shaped[1:, 0].tolist())
     hocompl = sorted(list(set(allinds)-set(hoinds)))
     fooholdout = ordinary_one_step_kernel_rls_with_crazy_kernel.holdout(hoinds)[0]
     params = {}
     params["regparam"] = 1.
     params["X"] = crazykernel[np.ix_(hocompl, hocompl)]
     params['kernel'] = 'PrecomputedKernel'
     params["Y"] = Y_train[hocompl]
     ordinary_one_step_kernel_rls_with_crazy_kernel = RLS(**params)
     barholdout = ordinary_one_step_kernel_rls_with_crazy_kernel.predict(crazykernel[np.ix_([0], hocompl)])
     params = {}
     params["regparam"] = 1.
     K_train1_cut = K_train1[np.ix_(range(1, K_train1.shape[0]), range(1, K_train1.shape[1]))]
     K_train2_cut = K_train2[np.ix_(range(1, K_train2.shape[0]), range(1, K_train2.shape[1]))]
     crazykernel_cut = la.inv(regparam1 * regparam2 * np.kron(la.inv(K_train2_cut), la.inv(K_train1_cut))
                    + regparam1 * np.kron(np.eye(K_train2_cut.shape[0]), la.inv(K_train1_cut))
                    + regparam2 * np.kron(la.inv(K_train2_cut), np.eye(K_train1_cut.shape[0])))
     params["X"] = crazykernel_cut
     params['kernel'] = 'PrecomputedKernel'
     #params["Y"] = Y_train[hocompl]
     params["Y"] = Y_train.reshape((train_rows, train_columns), order = 'F')[np.ix_(range(1, train_rows), range(1, train_columns))].ravel(order = 'F')
     ordinary_one_step_kernel_rls_with_crazy_kernel = RLS(**params)
     bazholdout = ordinary_one_step_kernel_rls_with_crazy_kernel.predict(
         np.dot(np.dot(np.kron(K_train2[np.ix_([0], range(1, K_train2.shape[1]))], K_train1[np.ix_([0], range(1, K_train1.shape[1]))]),
                        la.inv(np.kron(K_train2_cut, K_train1_cut))),
                        crazykernel_cut))
     #print fooholdout, 'fooholdout', barholdout, bazholdout
     
     #Train linear two-step RLS without out-of-sample rows or columns for [0,0]
     params = {}
     params["regparam1"] = regparam1
     params["regparam2"] = regparam2
     params["X1"] = X_train1[range(1, X_train1.shape[0])]
     params["X2"] = X_train2[range(1, X_train2.shape[0])]
     params["Y"] = Y_train.reshape((train_rows, train_columns), order = 'F')[np.ix_(range(1, train_rows), range(1, train_columns))].ravel(order = 'F')
     linear_two_step_learner_00 = TwoStepRLS(**params)
     linear_two_step_testpred_00 = linear_two_step_learner_00.predict(X_train1[0], X_train2[0])
     
     #Train linear two-step RLS without out-of-sample rows or columns for [2,4]
     params = {}
     params["regparam1"] = regparam1
     params["regparam2"] = regparam2
     params["X1"] = X_train1[[0, 1] + range(3, K_train1.shape[0])]
     params["X2"] = X_train2[[0, 1, 2, 3] + range(5, K_train2.shape[0])]
     params["Y"] = Y_train.reshape((train_rows, train_columns), order = 'F')[np.ix_([0, 1] + range(3, train_rows), [0, 1, 2, 3] + range(5, train_columns))].ravel(order = 'F')
     linear_two_step_learner_24 = TwoStepRLS(**params)
     linear_two_step_testpred_24 = linear_two_step_learner_24.predict(X_train1[2], X_train2[4])
     
     #Train kernel two-step RLS without out-of-sample rows or columns for [0,0]
     params = {}
     params["regparam1"] = regparam1
     params["regparam2"] = regparam2
     params["K1"] = K_train1[np.ix_(range(1, K_train1.shape[0]), range(1, K_train1.shape[1]))]
     params["K2"] = K_train2[np.ix_(range(1, K_train2.shape[0]), range(1, K_train2.shape[1]))]
     params["Y"] = Y_train.reshape((train_rows, train_columns), order = 'F')[np.ix_(range(1, train_rows), range(1, train_columns))].ravel(order = 'F')
     kernel_two_step_learner_00 = TwoStepRLS(**params)
     kernel_two_step_testpred_00 = kernel_two_step_learner_00.predict(K_train1[range(1, K_train1.shape[0]), 0], K_train2[0, range(1, K_train2.shape[0])])
     
     #Train kernel two-step RLS without out-of-sample rows or columns for [2,4]
     params = {}
     params["regparam1"] = regparam1
     params["regparam2"] = regparam2
     params["K1"] = K_train1[np.ix_([0, 1] + range(3, K_train1.shape[0]), [0, 1] + range(3, K_train1.shape[0]))]
     params["K2"] = K_train2[np.ix_([0, 1, 2, 3] + range(5, K_train2.shape[0]), [0, 1, 2, 3] + range(5, K_train2.shape[0]))]
     params["Y"] = Y_train.reshape((train_rows, train_columns), order = 'F')[np.ix_([0, 1] + range(3, train_rows), [0, 1, 2, 3] + range(5, train_columns))].ravel(order = 'F')
     kernel_two_step_learner_24 = TwoStepRLS(**params)
     kernel_two_step_testpred_24 = kernel_two_step_learner_24.predict(K_train1[[0, 1] + range(3, K_train1.shape[0]), 2], K_train2[4, [0, 1, 2, 3] + range(5, K_train2.shape[0])])
     
     #Train kernel two-step RLS without out-of-sample row 0
     params = {}
     params["regparam1"] = regparam1
     params["regparam2"] = regparam2
     params["K1"] = K_train1[np.ix_(range(1, K_train1.shape[0]), range(1, K_train1.shape[1]))]
     params["K2"] = K_train2
     params["Y"] = Y_train.reshape((train_rows, train_columns), order = 'F')[range(1, train_rows)].ravel(order = 'F')
     kernel_two_step_learner_lro_0 = TwoStepRLS(**params)
     kernel_two_step_testpred_lro_0 = kernel_two_step_learner_lro_0.predict(K_train1[range(1, K_train1.shape[0]), 0], K_train2)
     print('')
     print('Leave-row-out with linear two-step RLS:')
     print(linear_lro.reshape((train_rows, train_columns), order = 'F')[0])
     print('Leave-row-out with kernel two-step RLS:')
     print(kernel_lro.reshape((train_rows, train_columns), order = 'F')[0])
     print('Two-step RLS trained without the held-out row predictions for the row:')
     print(kernel_two_step_testpred_lro_0)
     np.testing.assert_almost_equal(linear_lro.reshape((train_rows, train_columns), order = 'F')[0], kernel_two_step_testpred_lro_0)
     np.testing.assert_almost_equal(kernel_lro.reshape((train_rows, train_columns), order = 'F')[0], kernel_two_step_testpred_lro_0)
     
     
     #Train kernel two-step RLS without out-of-sample column 0
     params = {}
     params["regparam1"] = regparam1
     params["regparam2"] = regparam2
     params["K1"] = K_train1
     params["K2"] = K_train2[np.ix_(range(1, K_train2.shape[0]), range(1, K_train2.shape[1]))]
     params["Y"] = Y_train.reshape((train_rows, train_columns), order = 'F')[:, range(1, train_columns)].ravel(order = 'F')
     kernel_two_step_learner_lco_0 = TwoStepRLS(**params)
     kernel_two_step_testpred_lco_0 = kernel_two_step_learner_lco_0.predict(K_train1, K_train2[range(1, K_train2.shape[0]), 0])
     print('')
     print('Leave-column-out with linear two-step RLS:')
     print(linear_lco[range(train_rows)])
     print('Leave-column-out with kernel two-step RLS:')
     print(kernel_lco[range(train_rows)])
     print('Two-step RLS trained without the held-out column predictions for the column:')
     print(kernel_two_step_testpred_lco_0)
     np.testing.assert_almost_equal(linear_lco[range(train_rows)], kernel_two_step_testpred_lco_0)
     np.testing.assert_almost_equal(kernel_lco[range(train_rows)], kernel_two_step_testpred_lco_0)
     
     print('')
     print('Out-of-sample LOO: Stacked ordinary linear RLS LOO, Stacked ordinary kernel RLS LOO, linear two-step RLS OOSLOO, kernel two-step RLS OOSLOO, linear two-step RLS OOS-pred, kernel two-step RLS OOS-pred')
     print('[0, 0]: ' + str(secondsteploo_linear_rls[0, 0])
                      + ' ' + str(secondsteploo_kernel_rls[0, 0])
                      + ' ' + str(linear_two_step_testpred_00)
                      + ' ' + str(kernel_two_step_testpred_00)
                      + ' ' + str(linear_twostepoutofsampleloo[0, 0])
                      + ' ' + str(kernel_twostepoutofsampleloo[0, 0]))
     print('[2, 4]: ' + str(secondsteploo_linear_rls[2, 4])
                      + ' ' + str(secondsteploo_kernel_rls[2, 4])
                      + ' ' + str(linear_two_step_testpred_24)
                      + ' ' + str(kernel_two_step_testpred_24)
                      + ' ' + str(linear_twostepoutofsampleloo[2, 4])
                      + ' ' + str(kernel_twostepoutofsampleloo[2, 4]))
     np.testing.assert_almost_equal(secondsteploo_linear_rls, secondsteploo_kernel_rls)
     np.testing.assert_almost_equal(secondsteploo_linear_rls, linear_twostepoutofsampleloo)
     np.testing.assert_almost_equal(secondsteploo_linear_rls, kernel_twostepoutofsampleloo)
     np.testing.assert_almost_equal(secondsteploo_linear_rls[0, 0], linear_two_step_testpred_00)
     np.testing.assert_almost_equal(secondsteploo_linear_rls[0, 0], kernel_two_step_testpred_00)
     
     
     #Train kernel two-step RLS with pre-computed kernel matrices and with output at position [2, 4] changed
     Y_24 = Y_train.copy()
     Y_24 = Y_24.reshape((train_rows, train_columns), order = 'F')
     Y_24[2, 4] = 55.
     Y_24 = Y_24.ravel(order = 'F')
     params = {}
     params["regparam1"] = regparam1
     params["regparam2"] = regparam2
     params["K1"] = K_train1
     params["K2"] = K_train2
     params["Y"] = Y_24
     kernel_two_step_learner_Y_24 = TwoStepRLS(**params)
     kernel_two_step_testpred_Y_24 = kernel_two_step_learner_Y_24.predict(K_test1, K_test2)
     
     
     kernel_two_step_learner_inSampleLOO_24a = kernel_two_step_learner.in_sample_loo().reshape((train_rows, train_columns), order = 'F')[2, 4]
     kernel_two_step_learner_inSampleLOO_24b = kernel_two_step_learner_Y_24.in_sample_loo().reshape((train_rows, train_columns), order = 'F')[2, 4]
     print('')
     print('In-sample LOO: Kernel two-step RLS ISLOO with original outputs, Kernel two-step RLS ISLOO with modified output at [2, 4]')
     print('[2, 4] ' + str(kernel_two_step_learner_inSampleLOO_24a) + ' ' + str(kernel_two_step_learner_inSampleLOO_24b))
     np.testing.assert_almost_equal(kernel_two_step_learner_inSampleLOO_24a, kernel_two_step_learner_inSampleLOO_24b)
     
     
     
     #Train kernel two-step RLS with pre-computed kernel matrices and with output at position [1, 1] changed
     Y_00 = Y_train.copy()
     Y_00 = Y_00.reshape((train_rows, train_columns), order = 'F')
     Y_00[0, 0] = 55.
     Y_00 = Y_00.ravel(order = 'F')
     params = {}
     params["regparam1"] = regparam1
     params["regparam2"] = regparam2
     params["K1"] = K_train1
     params["K2"] = K_train2
     params["Y"] = Y_00
     kernel_two_step_learner_Y_00 = TwoStepRLS(**params)
     kernel_two_step_testpred_Y_00 = kernel_two_step_learner_Y_00.predict(K_test1, K_test2)
     
     kernel_two_step_learner_inSampleLOO_00a = kernel_two_step_learner.in_sample_loo()[0]
     kernel_two_step_learner_inSampleLOO_00b = kernel_two_step_learner_Y_00.in_sample_loo()[0]
     print('')
     print('In-sample LOO: Kernel two-step RLS ISLOO with original outputs, Kernel two-step RLS ISLOO with modified output at [0, 0]')
     print('[0, 0] ' + str(kernel_two_step_learner_inSampleLOO_00a) + ' ' + str(kernel_two_step_learner_inSampleLOO_00b))
     np.testing.assert_almost_equal(kernel_two_step_learner_inSampleLOO_00a, kernel_two_step_learner_inSampleLOO_00b)
     
     
     #Create symmetric data
     K_train1, K_train2, Y_train, K_test1, K_test2, Y_test, X_train1, X_train2, X_test1, X_test2 \
         = self.generate_xortask(
         trainpos1 = 6,
         trainneg1 = 7,
         trainpos2 = 6,
         trainneg2 = 7,
         testpos1 = 26,
         testneg1 = 27,
         testpos2 = 25,
         testneg2 = 25
         )
     K_train1 = K_train2
     K_test1 = K_test2
     Y_train = 0.5 * (Y_train + Y_train.T)
     
     Y_train = Y_train.ravel(order = 'F')
     Y_test = Y_test.ravel(order = 'F')
     train_rows, train_columns = K_train1.shape[0], K_train2.shape[0]
     test_rows, test_columns = K_test1.shape[0], K_test2.shape[0]
     trainlabelcount = train_rows * train_columns
     
     #Train symmetric kernel two-step RLS with pre-computed kernel matrices
     params = {}
     params["regparam1"] = regparam2
     params["regparam2"] = regparam2
     params["K1"] = K_train1
     params["K2"] = K_train2
     params["Y"] = Y_train
     kernel_two_step_learner = TwoStepRLS(**params)
     kernel_two_step_testpred = kernel_two_step_learner.predict(K_test1, K_test2).reshape((test_rows, test_columns), order = 'F')
     
     #Train two-step RLS without out-of-sample rows or columns
     rowind, colind = 2, 4
     trainrowinds = range(K_train1.shape[0])
     trainrowinds.remove(rowind)
     trainrowinds.remove(colind)
     traincolinds = range(K_train2.shape[0])
     traincolinds.remove(rowind)
     traincolinds.remove(colind)
     
     params = {}
     params["regparam1"] = regparam2
     params["regparam2"] = regparam2
     params["K1"] = K_train1[np.ix_(trainrowinds, trainrowinds)]
     params["K2"] = K_train2[np.ix_(traincolinds, traincolinds)]
     params["Y"] = Y_train.reshape((train_rows, train_columns), order = 'F')[np.ix_(trainrowinds, traincolinds)].ravel(order = 'F')
     kernel_kron_learner = TwoStepRLS(**params)
     kernel_kron_testpred = kernel_kron_learner.predict(K_train1[np.ix_([rowind], trainrowinds)], K_train2[np.ix_([colind], traincolinds)]).reshape((1, 1), order = 'F')
     
     fcsho = kernel_two_step_learner.out_of_sample_loo_symmetric().reshape((train_rows, train_columns), order = 'F')
     
     print('')
     print('Symmetric double out-of-sample LOO: Test prediction, LOO')
     print('[2, 4]: ' + str(kernel_kron_testpred[0, 0]) + ' ' + str(fcsho[2, 4]))
     np.testing.assert_almost_equal(kernel_kron_testpred[0, 0], fcsho[2, 4])
コード例 #10
0
    def test_cg_kron_rls(self):

        regparam = 0.0001

        K_train1, K_train2, Y_train, K_test1, K_test2, Y_test, X_train1, X_train2, X_test1, X_test2 = self.generate_xortask(
        )
        #K_train1, K_train2, Y_train, K_test1, K_test2, Y_test, X_train1, X_train2, X_test1, X_test2 = self.generate_xortask(trainpos1 = 1, trainneg1 = 1, trainpos2 = 1, trainneg2 = 1, testpos1 = 1, testneg1 = 1, testpos2 = 1, testneg2 = 1)
        Y_train = Y_train.ravel(order='F')
        Y_test = Y_test.ravel(order='F')
        train_rows, train_columns = K_train1.shape[0], K_train2.shape[0]
        test_rows, test_columns = K_test1.shape[0], K_test2.shape[0]
        rowstimescols = train_rows * train_columns
        allindices = np.arange(rowstimescols)
        all_label_row_inds, all_label_col_inds = np.unravel_index(
            allindices, (train_rows, train_columns), order='F')
        #incinds = np.random.permutation(allindices)
        #incinds = np.random.choice(allindices, 50, replace = False)
        incinds = np.random.choice(allindices, 40, replace=False)
        label_row_inds, label_col_inds = all_label_row_inds[
            incinds], all_label_col_inds[incinds]
        Y_train_known_outputs = Y_train.reshape(rowstimescols,
                                                order='F')[incinds]

        alltestindices = np.arange(test_rows * test_columns)
        all_test_label_row_inds, all_test_label_col_inds = np.unravel_index(
            alltestindices, (test_rows, test_columns), order='F')

        #Train an ordinary RLS regressor for reference
        params = {}
        params["X"] = np.kron(K_train2, K_train1)[np.ix_(incinds, incinds)]
        params["kernel"] = "PrecomputedKernel"
        params["Y"] = Y_train_known_outputs
        params["regparam"] = regparam
        ordrls_learner = RLS(**params)
        ordrls_model = ordrls_learner.predictor
        K_Kron_test = np.kron(K_test2, K_test1)[:, incinds]
        ordrls_testpred = ordrls_model.predict(K_Kron_test)
        ordrls_testpred = ordrls_testpred.reshape((test_rows, test_columns),
                                                  order='F')

        #Train linear Kronecker RLS
        class TestCallback():
            def __init__(self):
                self.round = 0

            def callback(self, learner):
                self.round = self.round + 1
                tp = LinearPairwisePredictor(learner.W).predict(
                    X_test1, X_test2)
                print(
                    str(self.round) + ' ' +
                    str(np.mean(np.abs(tp -
                                       ordrls_testpred.ravel(order='F')))))

            def finished(self, learner):
                print('finished')

        params = {}
        params["regparam"] = regparam
        params["X1"] = X_train1
        params["X2"] = X_train2
        params["Y"] = Y_train_known_outputs
        params["label_row_inds"] = label_row_inds
        params["label_col_inds"] = label_col_inds
        tcb = TestCallback()
        params['callback'] = tcb
        linear_kron_learner = CGKronRLS(**params)
        linear_kron_testpred = linear_kron_learner.predict(
            X_test1, X_test2).reshape((test_rows, test_columns), order='F')
        linear_kron_testpred_alt = linear_kron_learner.predict(
            X_test1, X_test2, [0, 0, 1], [0, 1, 0])

        #Train kernel Kronecker RLS
        params = {}
        params["regparam"] = regparam
        params["K1"] = K_train1
        params["K2"] = K_train2
        params["Y"] = Y_train_known_outputs
        params["label_row_inds"] = label_row_inds
        params["label_col_inds"] = label_col_inds

        class KernelCallback():
            def __init__(self):
                self.round = 0

            def callback(self, learner):
                self.round = self.round + 1
                tp = KernelPairwisePredictor(learner.A, learner.input1_inds,
                                             learner.input2_inds).predict(
                                                 K_test1, K_test2)
                print(
                    str(self.round) + ' ' +
                    str(np.mean(np.abs(tp -
                                       ordrls_testpred.ravel(order='F')))))

            def finished(self, learner):
                print('finished')

        tcb = KernelCallback()
        params['callback'] = tcb
        kernel_kron_learner = CGKronRLS(**params)
        kernel_kron_testpred = kernel_kron_learner.predict(
            K_test1, K_test2).reshape((test_rows, test_columns), order='F')
        kernel_kron_testpred_alt = kernel_kron_learner.predict(
            K_test1, K_test2, [0, 0, 1], [0, 1, 0])

        print('Predictions: Linear CgKronRLS, Kernel CgKronRLS, ordinary RLS')
        print('[0, 0]: ' + str(linear_kron_testpred[0, 0]) + ' ' +
              str(kernel_kron_testpred[0, 0]) + ' ' +
              str(ordrls_testpred[0, 0])
              )  #, linear_kron_testpred_alt[0], kernel_kron_testpred_alt[0]
        print('[0, 1]: ' + str(linear_kron_testpred[0, 1]) + ' ' +
              str(kernel_kron_testpred[0, 1]) + ' ' +
              str(ordrls_testpred[0, 1])
              )  #, linear_kron_testpred_alt[1], kernel_kron_testpred_alt[1]
        print('[1, 0]: ' + str(linear_kron_testpred[1, 0]) + ' ' +
              str(kernel_kron_testpred[1, 0]) + ' ' +
              str(ordrls_testpred[1, 0])
              )  #, linear_kron_testpred_alt[2], kernel_kron_testpred_alt[2]
        print(
            'Meanabsdiff: linear KronRLS - ordinary RLS, kernel KronRLS - ordinary RLS'
        )
        print(
            str(np.mean(np.abs(linear_kron_testpred - ordrls_testpred))) +
            ' ' + str(np.mean(np.abs(kernel_kron_testpred - ordrls_testpred))))
        np.testing.assert_almost_equal(linear_kron_testpred,
                                       ordrls_testpred,
                                       decimal=5)
        np.testing.assert_almost_equal(kernel_kron_testpred,
                                       ordrls_testpred,
                                       decimal=4)

        #Train multiple kernel Kronecker RLS
        params = {}
        params["regparam"] = regparam
        params["K1"] = [K_train1, K_train1]
        params["K2"] = [K_train2, K_train2]
        params["weights"] = [1. / 3, 2. / 3]
        params["Y"] = Y_train_known_outputs
        params["label_row_inds"] = [label_row_inds, label_row_inds]
        params["label_col_inds"] = [label_col_inds, label_col_inds]

        class KernelCallback():
            def __init__(self):
                self.round = 0

            def callback(self, learner):
                self.round = self.round + 1
                tp = KernelPairwisePredictor(
                    learner.A, learner.input1_inds, learner.input2_inds,
                    params["weights"]).predict([K_test1, K_test1],
                                               [K_test2, K_test2])
                print(
                    str(self.round) + ' ' +
                    str(np.mean(np.abs(tp -
                                       ordrls_testpred.ravel(order='F')))))

            def finished(self, learner):
                print('finished')

        tcb = KernelCallback()
        params['callback'] = tcb
        mkl_kernel_kron_learner = CGKronRLS(**params)
        mkl_kernel_kron_testpred = mkl_kernel_kron_learner.predict(
            [K_test1, K_test1], [K_test2, K_test2]).reshape(
                (test_rows, test_columns), order='F')
        #kernel_kron_testpred_alt = kernel_kron_learner.predict(K_test1, K_test2, [0, 0, 1], [0, 1, 0])

        print(
            'Predictions: Linear CgKronRLS, MKL Kernel CgKronRLS, ordinary RLS'
        )
        print('[0, 0]: ' + str(linear_kron_testpred[0, 0]) + ' ' +
              str(mkl_kernel_kron_testpred[0, 0]) + ' ' +
              str(ordrls_testpred[0, 0])
              )  #, linear_kron_testpred_alt[0], kernel_kron_testpred_alt[0]
        print('[0, 1]: ' + str(linear_kron_testpred[0, 1]) + ' ' +
              str(mkl_kernel_kron_testpred[0, 1]) + ' ' +
              str(ordrls_testpred[0, 1])
              )  #, linear_kron_testpred_alt[1], kernel_kron_testpred_alt[1]
        print('[1, 0]: ' + str(linear_kron_testpred[1, 0]) + ' ' +
              str(mkl_kernel_kron_testpred[1, 0]) + ' ' +
              str(ordrls_testpred[1, 0])
              )  #, linear_kron_testpred_alt[2], kernel_kron_testpred_alt[2]
        print('Meanabsdiff: MKL kernel KronRLS - ordinary RLS')
        print(str(np.mean(np.abs(mkl_kernel_kron_testpred - ordrls_testpred))))
        np.testing.assert_almost_equal(mkl_kernel_kron_testpred,
                                       ordrls_testpred,
                                       decimal=4)

        #Train polynomial kernel Kronecker RLS
        params = {}
        params["regparam"] = regparam
        params["K1"] = [K_train1, K_train1, K_train2]
        params["K2"] = [K_train1, K_train2, K_train2]
        params["weights"] = [1., 2., 1.]
        params["Y"] = Y_train_known_outputs
        params["label_row_inds"] = [
            label_row_inds, label_row_inds, label_col_inds
        ]
        params["label_col_inds"] = [
            label_row_inds, label_col_inds, label_col_inds
        ]

        class KernelCallback():
            def __init__(self):
                self.round = 0

            def callback(self, learner):
                self.round = self.round + 1
                #tp = KernelPairwisePredictor(learner.A, learner.input1_inds, learner.input2_inds, params["weights"]).predict([K_test1, K_test1], [K_test2, K_test2])
                #print(str(self.round) + ' ' + str(np.mean(np.abs(tp - ordrls_testpred.ravel(order = 'F')))))
            def finished(self, learner):
                print('finished')

        tcb = KernelCallback()
        params['callback'] = tcb
        poly_kernel_kron_learner = CGKronRLS(**params)
        poly_kernel_kron_testpred = poly_kernel_kron_learner.predict(
            [K_test1, K_test1, K_test2], [K_test1, K_test2, K_test2], [
                all_test_label_row_inds, all_test_label_row_inds,
                all_test_label_col_inds
            ], [
                all_test_label_row_inds, all_test_label_col_inds,
                all_test_label_col_inds
            ])
        #print(poly_kernel_kron_testpred, 'Polynomial kernel via CGKronRLS')

        #Train an ordinary RLS regressor with polynomial kernel for reference
        params = {}
        params["X"] = np.hstack([
            np.kron(np.ones((X_train2.shape[0], 1)), X_train1),
            np.kron(X_train2, np.ones((X_train1.shape[0], 1)))
        ])[incinds]
        #params["X"] = np.hstack([np.kron(X_train1, np.ones((X_train2.shape[0], 1))), np.kron(np.ones((X_train1.shape[0], 1)), X_train2)])[incinds]
        params["kernel"] = "PolynomialKernel"
        params["Y"] = Y_train_known_outputs
        params["regparam"] = regparam
        ordrls_poly_kernel_learner = RLS(**params)
        X_dir_test = np.hstack([
            np.kron(np.ones((X_test2.shape[0], 1)), X_test1),
            np.kron(X_test2, np.ones((X_test1.shape[0], 1)))
        ])
        #X_dir_test = np.hstack([np.kron(X_test1, np.ones((X_test2.shape[0], 1))), np.kron(np.ones((X_test1.shape[0], 1)), X_test2)])
        ordrls_poly_kernel_testpred = ordrls_poly_kernel_learner.predict(
            X_dir_test)
        #print(ordrls_poly_kernel_testpred, 'Ord. poly RLS')
        print(
            'Meanabsdiff: Polynomial kernel KronRLS - Ordinary polynomial kernel RLS'
        )
        print(
            str(
                np.mean(
                    np.abs(poly_kernel_kron_testpred -
                           ordrls_poly_kernel_testpred))))
        '''
コード例 #11
0
ファイル: rls_defparams.py プロジェクト: vivian457/RLScore
import numpy as np
from rlscore.learner.rls import RLS
from rlscore.utilities.reader import read_sparse
from rlscore.measure import auc
train_labels = np.loadtxt("./legacy_tests/data/class_train.labels")
test_labels = np.loadtxt("./legacy_tests/data/class_test.labels")
train_features = read_sparse("./legacy_tests/data/class_train.features")
test_features = read_sparse("./legacy_tests/data/class_test.features")
kwargs = {}
kwargs["Y"] = train_labels
kwargs["X"] = train_features
kwargs["regparam"] = 1
learner = RLS(**kwargs)
P = learner.predict(test_features)
test_perf = auc(test_labels, P)
print("test set performance: %f" %test_perf)
コード例 #12
0
 def test_kron_rls(self):
     
     regparam = 0.001
     
     K_train1, K_train2, Y_train, K_test1, K_test2, Y_test, X_train1, X_train2, X_test1, X_test2 = self.generate_xortask()
     Y_train = Y_train.ravel(order = 'F')
     Y_test = Y_test.ravel(order = 'F')
     train_rows, train_columns = K_train1.shape[0], K_train2.shape[0]
     test_rows, test_columns = K_test1.shape[0], K_test2.shape[0]
     trainlabelcount = train_rows * train_columns
     
     #Train linear Kronecker RLS with data-matrices
     params = {}
     params["regparam"] = regparam
     params["X1"] = X_train1
     params["X2"] = X_train2
     params["Y"] = Y_train
     linear_kron_learner = KronRLS(**params)
     linear_kron_testpred = linear_kron_learner.predict(X_test1, X_test2).reshape((test_rows, test_columns), order = 'F')
     
     #Train kernel Kronecker RLS with pre-computed kernel matrices
     params = {}
     params["regparam"] = regparam
     params["K1"] = K_train1
     params["K2"] = K_train2
     params["Y"] = Y_train
     kernel_kron_learner = KronRLS(**params)
     kernel_kron_testpred = kernel_kron_learner.predict(K_test1, K_test2).reshape((test_rows, test_columns), order = 'F')
     
     #Train an ordinary RLS regressor for reference
     K_Kron_train_x = np.kron(K_train2, K_train1)
     params = {}
     params["X"] = K_Kron_train_x
     params["kernel"] = "PrecomputedKernel"
     params["Y"] = Y_train.reshape(trainlabelcount, 1, order = 'F')
     ordrls_learner = RLS(**params)
     ordrls_learner.solve(regparam)
     K_Kron_test_x = np.kron(K_test2, K_test1)
     ordrls_testpred = ordrls_learner.predict(K_Kron_test_x)
     ordrls_testpred = ordrls_testpred.reshape((test_rows, test_columns), order = 'F')
     
     print('')
     print('Prediction: linear KronRLS, kernel KronRLS, ordinary RLS')
     print('[0, 0] ' + str(linear_kron_testpred[0, 0]) + ' ' + str(kernel_kron_testpred[0, 0]) + ' ' + str(ordrls_testpred[0, 0]))
     print('[0, 1] ' + str(linear_kron_testpred[0, 1]) + ' ' + str(kernel_kron_testpred[0, 1]) + ' ' + str(ordrls_testpred[0, 1]))
     print('[1, 0] ' + str(linear_kron_testpred[1, 0]) + ' ' + str(kernel_kron_testpred[1, 0]) + ' ' + str(ordrls_testpred[1, 0]))
     print('Meanabsdiff: linear KronRLS - ordinary RLS, kernel KronRLS - ordinary RLS')
     print(str(np.mean(np.abs(linear_kron_testpred - ordrls_testpred))) + ' ' + str(np.mean(np.abs(kernel_kron_testpred - ordrls_testpred))))
     np.testing.assert_almost_equal(linear_kron_testpred, ordrls_testpred)
     np.testing.assert_almost_equal(kernel_kron_testpred, ordrls_testpred)
     
     print('')
     ordrls_loopred = ordrls_learner.leave_one_out().reshape((train_rows, train_columns), order = 'F')
     linear_kron_loopred = linear_kron_learner.in_sample_loo().reshape((train_rows, train_columns), order = 'F')
     kernel_kron_loopred = kernel_kron_learner.in_sample_loo().reshape((train_rows, train_columns), order = 'F')
     print('In-sample LOO: linear KronRLS, kernel KronRLS, ordinary RLS')
     print('[0, 0] ' + str(linear_kron_loopred[0, 0]) + ' ' + str(kernel_kron_loopred[0, 0]) + ' ' + str(ordrls_loopred[0, 0]))
     print('[0, 1] ' + str(linear_kron_loopred[0, 1]) + ' ' + str(kernel_kron_loopred[0, 1]) + ' ' + str(ordrls_loopred[0, 1]))
     print('[1, 0] ' + str(linear_kron_loopred[1, 0]) + ' ' + str(kernel_kron_loopred[1, 0]) + ' ' + str(ordrls_loopred[1, 0]))
     print('Meanabsdiff: linear KronRLS - ordinary RLS, kernel KronRLS - ordinary RLS')
     print(str(np.mean(np.abs(linear_kron_loopred - ordrls_loopred))) + ' ' + str(np.mean(np.abs(kernel_kron_loopred - ordrls_loopred))))
     np.testing.assert_almost_equal(linear_kron_loopred, ordrls_loopred)
     np.testing.assert_almost_equal(kernel_kron_loopred, ordrls_loopred)
コード例 #13
0
ファイル: test_cg_kron_rls.py プロジェクト: disc5/RLScore
    def test_cg_kron_rls(self):

        regparam = 0.0001

        K_train1, K_train2, Y_train, K_test1, K_test2, Y_test, X_train1, X_train2, X_test1, X_test2 = self.generate_xortask(
        )
        Y_train = Y_train.ravel(order='F')
        Y_test = Y_test.ravel(order='F')
        train_rows, train_columns = K_train1.shape[0], K_train2.shape[0]
        test_rows, test_columns = K_test1.shape[0], K_test2.shape[0]
        rowstimescols = train_rows * train_columns
        allindices = np.arange(rowstimescols)
        all_label_row_inds, all_label_col_inds = np.unravel_index(
            allindices, (train_rows, train_columns), order='F')
        incinds = pyrandom.sample(allindices, 50)
        label_row_inds, label_col_inds = all_label_row_inds[
            incinds], all_label_col_inds[incinds]
        Y_train_known_outputs = Y_train.reshape(rowstimescols,
                                                order='F')[incinds]

        #Train an ordinary RLS regressor for reference
        params = {}
        params["X"] = np.kron(K_train2, K_train1)[np.ix_(incinds, incinds)]
        params["kernel"] = "PrecomputedKernel"
        params["Y"] = Y_train_known_outputs
        params["regparam"] = regparam
        ordrls_learner = RLS(**params)
        ordrls_model = ordrls_learner.predictor
        K_Kron_test = np.kron(K_test2, K_test1)[:, incinds]
        ordrls_testpred = ordrls_model.predict(K_Kron_test)
        ordrls_testpred = ordrls_testpred.reshape((test_rows, test_columns),
                                                  order='F')

        #Train linear Kronecker RLS
        class TestCallback():
            def __init__(self):
                self.round = 0

            def callback(self, learner):
                self.round = self.round + 1
                tp = LinearPairwisePredictor(learner.W).predict(
                    X_test1, X_test2)
                print(
                    str(self.round) + ' ' +
                    str(np.mean(np.abs(tp -
                                       ordrls_testpred.ravel(order='F')))))

            def finished(self, learner):
                print('finished')

        params = {}
        params["regparam"] = regparam
        params["X1"] = X_train1
        params["X2"] = X_train2
        params["Y"] = Y_train_known_outputs
        params["label_row_inds"] = label_row_inds
        params["label_col_inds"] = label_col_inds
        tcb = TestCallback()
        params['callback'] = tcb
        linear_kron_learner = CGKronRLS(**params)
        linear_kron_testpred = linear_kron_learner.predict(
            X_test1, X_test2).reshape((test_rows, test_columns), order='F')
        linear_kron_testpred_alt = linear_kron_learner.predict(
            X_test1, X_test2, [0, 0, 1], [0, 1, 0])

        #Train kernel Kronecker RLS
        params = {}
        params["regparam"] = regparam
        params["K1"] = K_train1
        params["K2"] = K_train2
        params["Y"] = Y_train_known_outputs
        params["label_row_inds"] = label_row_inds
        params["label_col_inds"] = label_col_inds

        class KernelCallback():
            def __init__(self):
                self.round = 0

            def callback(self, learner):
                self.round = self.round + 1
                tp = KernelPairwisePredictor(learner.A, learner.input1_inds,
                                             learner.input2_inds).predict(
                                                 K_test1, K_test2)
                print(
                    str(self.round) + ' ' +
                    str(np.mean(np.abs(tp -
                                       ordrls_testpred.ravel(order='F')))))

            def finished(self, learner):
                print('finished')

        tcb = KernelCallback()
        params['callback'] = tcb
        kernel_kron_learner = CGKronRLS(**params)
        kernel_kron_testpred = kernel_kron_learner.predict(
            K_test1, K_test2).reshape((test_rows, test_columns), order='F')
        kernel_kron_testpred_alt = kernel_kron_learner.predict(
            K_test1, K_test2, [0, 0, 1], [0, 1, 0])

        print('Predictions: Linear CgKronRLS, Kernel CgKronRLS, ordinary RLS')
        print('[0, 0]: ' + str(linear_kron_testpred[0, 0]) + ' ' +
              str(kernel_kron_testpred[0, 0]) + ' ' +
              str(ordrls_testpred[0, 0])
              )  #, linear_kron_testpred_alt[0], kernel_kron_testpred_alt[0]
        print('[0, 1]: ' + str(linear_kron_testpred[0, 1]) + ' ' +
              str(kernel_kron_testpred[0, 1]) + ' ' +
              str(ordrls_testpred[0, 1])
              )  #, linear_kron_testpred_alt[1], kernel_kron_testpred_alt[1]
        print('[1, 0]: ' + str(linear_kron_testpred[1, 0]) + ' ' +
              str(kernel_kron_testpred[1, 0]) + ' ' +
              str(ordrls_testpred[1, 0])
              )  #, linear_kron_testpred_alt[2], kernel_kron_testpred_alt[2]
        print(
            'Meanabsdiff: linear KronRLS - ordinary RLS, kernel KronRLS - ordinary RLS'
        )
        print(
            str(np.mean(np.abs(linear_kron_testpred - ordrls_testpred))) +
            ' ' + str(np.mean(np.abs(kernel_kron_testpred - ordrls_testpred))))
        np.testing.assert_almost_equal(linear_kron_testpred,
                                       ordrls_testpred,
                                       decimal=5)
        np.testing.assert_almost_equal(kernel_kron_testpred,
                                       ordrls_testpred,
                                       decimal=5)