class KBRL_RRT(Planner): def __init__(self, robot, environment, sampler=None, dist_to_goal=1.0, max_iterations=5000, bias=1.0, psi=None, screenshot_rate=1, save_screenshots=False): heuristic = lambda s, t: robot.get_dist(s, t) env = environment if sampler is None: sampler = UniformSampler(environment.config_range) if psi is None: psi = RBF_Kernel(np.ones(len(environment.config_range)) * 1.0) self.dist_to_goal = dist_to_goal self.rl_planner = RL_planner(env, heuristic, sampler, bias, psi) self.robot = robot self.max_iterations = max_iterations self.screenshot_rate = screenshot_rate self.save_screenshots = save_screenshots def __call__(self, start, goal): start = np.array(start) goal = np.array(goal) goal_test = lambda x: self.robot.get_dist(x, goal ) < self.dist_to_goal path, data = self.rl_planner.plan( start, goal, goal_test, screenshot_rate=self.screenshot_rate, save_screenshot=self.save_screenshots, max_iterations=self.max_iterations) data['robot'] = self.robot return path, data
class KBRL_RRT(Planner): def __init__(self, robot, environment, sampler = None, dist_to_goal = 1.0, max_iterations=5000, bias = 1.0, psi = None, screenshot_rate = 1, save_screenshots = False): heuristic = lambda s, t: robot.get_dist(s, t) env = environment if sampler is None: sampler = UniformSampler(environment.config_range) if psi is None: psi = RBF_Kernel(np.ones(len(environment.config_range))*1.0) self.dist_to_goal = dist_to_goal self.rl_planner = RL_planner(env, heuristic, sampler, bias, psi) self.robot = robot self.max_iterations = max_iterations self.screenshot_rate = screenshot_rate self.save_screenshots = save_screenshots def __call__(self, start, goal): start = np.array(start) goal = np.array(goal) goal_test = lambda x: self.robot.get_dist(x, goal) < self.dist_to_goal path, data = self.rl_planner.plan(start, goal, goal_test, screenshot_rate = self.screenshot_rate, save_screenshot = self.save_screenshots, max_iterations = self.max_iterations) data['robot'] = self.robot return path, data
def __init__(self, robot, environment, sampler = None, dist_to_goal = 1.0, max_iterations=5000, bias = 1.0, psi = None, screenshot_rate = 1, save_screenshots = False): heuristic = lambda s, t: robot.get_dist(s, t) env = environment if sampler is None: sampler = UniformSampler(environment.config_range) if psi is None: psi = RBF_Kernel(np.ones(len(environment.config_range))*1.0) self.dist_to_goal = dist_to_goal self.rl_planner = RL_planner(env, heuristic, sampler, bias, psi) self.robot = robot self.max_iterations = max_iterations self.screenshot_rate = screenshot_rate self.save_screenshots = save_screenshots
def __init__(self, robot, environment, sampler=None, dist_to_goal=1.0, max_iterations=5000, bias=1.0, psi=None, screenshot_rate=1, save_screenshots=False): heuristic = lambda s, t: robot.get_dist(s, t) env = environment if sampler is None: sampler = UniformSampler(environment.config_range) if psi is None: psi = RBF_Kernel(np.ones(len(environment.config_range)) * 1.0) self.dist_to_goal = dist_to_goal self.rl_planner = RL_planner(env, heuristic, sampler, bias, psi) self.robot = robot self.max_iterations = max_iterations self.screenshot_rate = screenshot_rate self.save_screenshots = save_screenshots