コード例 #1
0
def evalFunc_WSC(individual, Original, weights, constraints=[]):
    userSize = Original.shape[0]
    permissionSize = Original.shape[1]
    if (constraints and
            not feasible(individual, userSize, permissionSize, constraints)):
        fitness = len(weights)
    else:
        numberOfRoles = len(individual[0])
        array = decoder.resolveRoleModelChromosomeIntoBoolArray(
            individual[0], userSize, permissionSize)
        conf, accs = matrixOps.compareMatrices(array, Original)
        numberOfUR = statistics.URCnt(individual[0])
        numberOfRP = statistics.RPCnt(individual[0])

        w1 = weights[0]
        w2 = weights[1]
        w3 = weights[2]
        w4 = weights[3]

        worstCase_numberOfRoles = min(userSize, permissionSize)
        numberOfRoles_normalized = utils.normalization(
            numberOfRoles, 1, worstCase_numberOfRoles)
        accs_normalized = utils.normalization(accs, 0, Original.sum())
        numberOfUR_normalized = utils.normalization(
            numberOfUR, userSize, userSize * worstCase_numberOfRoles)
        numberOfRP_normalized = utils.normalization(
            numberOfRP, permissionSize,
            permissionSize * worstCase_numberOfRoles)

        fitness = (w1 * numberOfRoles_normalized + w2 * numberOfUR_normalized +
                   w3 * numberOfRP_normalized + w4 * accs_normalized)

    return fitness,
コード例 #2
0
def evalFunc_WSC_Star_RoleDis(individual,
                              Original,
                              weights,
                              population,
                              constraints=[]):
    userSize = Original.shape[0]
    permissionSize = Original.shape[1]
    if (constraints and
            not feasible(individual, userSize, permissionSize, constraints)):
        fitness = len(weights)
    else:
        numberOfRoles = len(individual[0])
        array = decoder.resolveRoleModelChromosomeIntoBoolArray(
            individual[0], userSize, permissionSize)
        conf, accs = matrixOps.compareMatrices(array, Original)
        numberOfUR = statistics.URCnt(individual[0])
        numberOfRP = statistics.RPCnt(individual[0])

        count = 0
        for rm in population:
            count += len(rm[0])
        numberOfRolesInPop = count / len(population)
        roleDis = abs(numberOfRolesInPop - numberOfRoles)
        if (roleDis < 3):
            roleDis = 0

        w1 = weights[0]
        w2 = weights[1]
        w3 = weights[2]
        w4 = weights[3]
        w5 = weights[4]
        w6 = weights[5]

        worstCase_numberOfRoles = min(userSize, permissionSize)
        numberOfRoles_normalized = utils.normalization(
            numberOfRoles, 1, worstCase_numberOfRoles)
        accs_normalized = utils.normalization(accs, 0, Original.sum())
        conf_normalized = utils.normalization(conf, 0,
                                              Original.size - Original.sum())
        numberOfUR_normalized = utils.normalization(
            numberOfUR, userSize, userSize * worstCase_numberOfRoles)
        numberOfRP_normalized = utils.normalization(
            numberOfRP, permissionSize,
            permissionSize * worstCase_numberOfRoles)
        roleDis_normalized = utils.normalization(
            roleDis, 0,
            max(numberOfRolesInPop, permissionSize - numberOfRolesInPop,
                userSize - numberOfRolesInPop))

        fitness = (w1 * numberOfRoles_normalized + w2 * numberOfUR_normalized +
                   w3 * numberOfRP_normalized + w4 * accs_normalized +
                   w5 * conf_normalized + w6 * roleDis_normalized)

    return fitness,
コード例 #3
0
def evalFunc_URCnt(individual, Original, constraints=[]):
    userSize = Original.shape[0]
    permissionSize = Original.shape[1]
    numberOfUR = statistics.URCnt(individual[0])
    if (constraints and
            not feasible(individual, userSize, permissionSize, constraints)):
        worstCase_numberOfRoles = min(userSize, permissionSize)
        fitness = worstCase_numberOfRoles
    else:
        fitness = numberOfUR
    return fitness,
コード例 #4
0
def evalFunc_AssignmentCnt2(individual, Original, constraints=[]):
    userSize = Original.shape[0]
    permissionSize = Original.shape[1]
    if (constraints and
            not feasible(individual, userSize, permissionSize, constraints)):
        worstCase_numberOfRoles = min(userSize, permissionSize)
        fitness = worstCase_numberOfRoles * 2
    else:
        numberOfUR = statistics.URCnt(individual[0])
        numberOfRP = statistics.RPCnt(individual[0])
        fitness = numberOfUR + numberOfRP
    return fitness,
コード例 #5
0
def getIndWithLowestURRPCnt(population, OriginalFile, topk=1):
    Original = numpy.matrix(parser.read(OriginalFile))
    #top_inds = population
    toplist = []
    for ind in population:
        count = statistics.URCnt(ind[0]) + statistics.RPCnt(ind[0])
        if (len(toplist) <= topk):
            toplist.append([count, ind])
            toplist.sort(key=lambda tup: tup[0])
        else:
            if (count < toplist[0][0]):
                toplist[0] = [count, ind]
                toplist.sort(key=lambda tup: tup[0])

    for t in toplist:
        print(str(t[0]) + ":\t" + str(t[1]))
コード例 #6
0
def printStatistics(population, OriginalFile, topk=1):
    Original = numpy.matrix(parser.read(OriginalFile))
    #top_inds = population
    top_inds = tools.selNSGA2(population, k=topk)
    i = 0
    for top_ind in top_inds:
        conf = statistics.Conf(top_ind[0], Original)
        accs = statistics.Accs(top_ind[0], Original)
        roleCnt = statistics.RoleCnt(top_ind[0])
        urCnt = statistics.URCnt(top_ind[0])
        rpCnt = statistics.RPCnt(top_ind[0])
        print("\nTOP INDIVIDUAL: " + str(i))
        print("conf: " + str(conf))
        print("accs: " + str(accs))
        print("roleCnt: " + str(roleCnt))
        print("urCnt: " + str(urCnt))
        print("rpCnt: " + str(rpCnt))
        i += 1
コード例 #7
0
def evalFunc_Int_AssignmentCnt(individual,
                               Original,
                               userAttributeValues,
                               constraints=[]):
    userSize = Original.shape[0]
    permissionSize = Original.shape[1]
    if (constraints and
            not feasible(individual, userSize, permissionSize, constraints)):
        worstCase_interp = 1
        fitness = worstCase_interp
    else:
        AssignmentCnt = statistics.URCnt(individual[0]) + statistics.RPCnt(
            individual[0])
        AssignmentCnt_normalized = utils.normalization(
            AssignmentCnt, userSize + permissionSize,
            userSize * permissionSize)
        interp = statistics.Interp(individual[0], userAttributeValues)
        fitness = AssignmentCnt_normalized - interp + 1
    return fitness,
コード例 #8
0
def evolution_multi(Original,
                    evalFunc,
                    populationSize,
                    CXPB,
                    addRolePB,
                    removeRolePB,
                    removeUserPB,
                    removePermissionPB,
                    addUserPB,
                    addPermissionPB,
                    NGEN,
                    freq,
                    numberTopRoleModels,
                    optimization,
                    fortin=False,
                    untilSolutionFound=False,
                    pickleFile="",
                    checkpoint=False,
                    prevFiles="",
                    userAttributeValues=[],
                    constraints=[],
                    printPopulations=False,
                    pop_directory="",
                    fixedRoleCnt=0):

    # Validations
    if (len(evalFunc) < 2):
        raise ValueError("Less than 2 objectives not possible")
    if (len(evalFunc) > 3):
        raise ValueError("More than 3 objectives not supported")
    if (not (populationSize % 4 == 0)):
        raise ValueError("Population size has to be a multiple of 4")

    logger.debug("Prepare evolutionary algorithm...")
    time = []
    results = defaultdict(list)
    genStart = 0
    population = []

    # Create Logbook
    logbook = tools.Logbook()

    # Register Optimization
    weights = ()
    for obj in evalFunc:
        if (obj == "FBasic" or obj == "FEdge"):
            weights += (1.0, )
        else:
            weights += (-1.0, )
    creator.create("FitnessMinMax", base.Fitness, weights=weights)
    creator.create("Individual", list, fitness=creator.FitnessMinMax)

    # Get Checkpoint
    '''if (checkpoint and len(prevFiles)!=0):
        prevFile = prevFiles[0]
        if (os.path.isfile(prevFile)):
            print("Read checkpoint...")
            cp = pickle.load(open(prevFile, "rb"))
            population = cp["population"]
            genStart = int(cp["generation"])
            Original = cp["Original"]
            results=cp["results"]
            time=cp["time"]
            prevFiles=cp["prevFiles"]
            prevFiles.append(prevFile)
            logbook=cp["logbook"]
            random.setstate(cp["rndstate"])
            print("DONE.\n")
        else:
            print("Checkpoint file does not exit")
    else:
        print("Use checkpoint: False")
        checkpoint = False'''

    userSize = int(Original.shape[0])
    permissionSize = int(Original.shape[1])

    # Toolbox
    toolbox = base.Toolbox()
    # Chromosome generator
    toolbox.register("chromosome",
                     init.generateChromosome,
                     userSize,
                     userSize,
                     permissionSize,
                     optimization=optimization,
                     fixedRoleCnt=fixedRoleCnt)
    # Structure initializers
    toolbox.register("individual", tools.initRepeat, creator.Individual,
                     toolbox.chromosome, 1)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)

    # Genetic Operators
    toolbox.register("evaluate",
                     evals.evalFunc_Multi,
                     Original=Original,
                     evalFunc=evalFunc,
                     userAttributeValues=userAttributeValues,
                     constraints=constraints)

    toolbox.register("mate", operators.mateFunc, optimization=optimization)
    toolbox.register("mutate",
                     operators.mutFunc,
                     addRolePB=addRolePB,
                     removeRolePB=removeRolePB,
                     removeUserPB=removeUserPB,
                     removePermissionPB=removePermissionPB,
                     addUserPB=addUserPB,
                     addPermissionPB=addPermissionPB,
                     userSize=userSize,
                     permissionSize=permissionSize,
                     optimization=[optimization, optimization])
    if (fortin):
        toolbox.register("preselect", fortin2013.selTournamentFitnessDCD)
        toolbox.register("select", fortin2013.selNSGA2)
    else:
        toolbox.register("preselect", tools.selTournamentDCD)
        toolbox.register("select", tools.selNSGA2)

    # Register statistics
    statsConf = tools.Statistics(
        key=lambda ind: statistics.Conf(ind[0], Original))
    statsAccs = tools.Statistics(
        key=lambda ind: statistics.Accs(ind[0], Original))
    statsRoleCnt = tools.Statistics(key=lambda ind: statistics.RoleCnt(ind[0]))
    statsURCnt = tools.Statistics(key=lambda ind: statistics.URCnt(ind[0]))
    statsRPCnt = tools.Statistics(key=lambda ind: statistics.RPCnt(ind[0]))
    statsInterp = tools.Statistics(
        key=lambda ind: statistics.Interp(ind[0], userAttributeValues))
    mstats = None
    if (len(evalFunc) >= 2):
        statsFitness1 = tools.Statistics(key=lambda ind: ind.fitness.values[0])
        statsFitness2 = tools.Statistics(key=lambda ind: ind.fitness.values[1])
        mstats = tools.MultiStatistics(fitnessObj1=statsFitness1,
                                       fitnessObj2=statsFitness2,
                                       Conf=statsConf,
                                       Accs=statsAccs,
                                       RoleCnt=statsRoleCnt,
                                       URCnt=statsURCnt,
                                       RPCnt=statsRPCnt,
                                       Interp=statsInterp)
    if (len(evalFunc) == 3):
        statsFitness3 = tools.Statistics(key=lambda ind: ind.fitness.values[2])
        mstats = tools.MultiStatistics(fitnessObj1=statsFitness1,
                                       fitnessObj2=statsFitness2,
                                       fitnessObj3=statsFitness3,
                                       Conf=statsConf,
                                       Accs=statsAccs,
                                       RoleCnt=statsRoleCnt,
                                       URCnt=statsURCnt,
                                       RPCnt=statsRPCnt,
                                       Interp=statsInterp)
    mstats.register("avg", numpy.mean)
    mstats.register("std", numpy.std)
    mstats.register("min", numpy.min)
    mstats.register("max", numpy.max)
    logbook.header = "gen", "evals"
    for o in range(1, len(evalFunc) + 1):
        logbook.chapters["fitnessObj" +
                         str(o)].header = "min", "avg", "max", "std"
    logbook.chapters["Conf"].header = "min", "avg", "max", "std"
    logbook.chapters["Accs"].header = "min", "avg", "max", "std"
    logbook.chapters["RoleCnt"].header = "min", "avg", "max", "std"
    logbook.chapters["URCnt"].header = "min", "avg", "max", "std"
    logbook.chapters["RPCnt"].header = "min", "avg", "max", "std"
    logbook.chapters["Interp"].header = "min", "avg", "max", "std"

    # Creating the population
    if (not population):
        logger.info("Generate new population of " + str(populationSize) +
                    " individuals")
        population = toolbox.population(n=populationSize)

    solutionFound = [None, None, None]

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit
        if (fit[0] == 0):
            solutionFound[0] = 0
        if (fit[1] == 0):
            solutionFound[1] = 0
        if (max(fit) == 0):
            solutionFound[2] = 0

    # Save population in JSON file
    if (printPopulations):
        pop_subdirectory = pop_directory + "\\Generation_" + str(genStart)
        #if not os.path.exists(pop_subdirectory):
        #    os.makedirs(pop_subdirectory)
        utils.saveDiversity(genStart, population,
                            pop_subdirectory + "_diversity.json")
        utils.savePopulation(genStart, population,
                             pop_subdirectory + "_population.pkl")
        #visual.showBestResult(population, genStart, Original, pop_subdirectory+"\\Individual", "Individual", "Individual from Generation "+str(genStart), False, False, True, False)

    # Log statistics for first generation
    if ((len(logbook) == 0)
            or (logbook.pop(len(logbook) - 1)["gen"] != genStart)):
        record = mstats.compile(population)
        logbook.record(gen=genStart, evals=len(invalid_ind), **record)
        printText = "Generation " + str(genStart) + ":\t" + str(
            logbook.stream) + "\n"
        for o in range(1, len(evalFunc) + 1):
            printText += "\n" + str(
                logbook.chapters["fitnessObj" + str(o)].stream)
        printText += str(logbook.chapters["Conf"].stream)+"\n"\
                     +str(logbook.chapters["Accs"].stream)+"\n"+\
                     str(logbook.chapters["RoleCnt"].stream)+"\n"\
                     +str(logbook.chapters["URCnt"].stream)+"\n"\
                     +str(logbook.chapters["RPCnt"].stream)+"\n"\
                     +str(logbook.chapters["Interp"].stream)
        logger.info(printText)

    # Begin the evolution
    logger.info("Start evolution...")
    start = datetime.datetime.now()
    logger.info("Start time: " + str(start))
    #hof = tools.HallOfFame(maxsize=1)

    # This is just to assign the crowding distance to the individuals
    # no actual selection is done
    population = toolbox.select(population, len(population))

    generation = genStart + 1
    stop = False
    logger.info("Start evolution with Generation " + str(genStart))
    while ((not stop) and (generation <= genStart + NGEN)):

        # Vary the population
        offspring = toolbox.preselect(population, len(population))
        offspring = [toolbox.clone(ind) for ind in offspring]
        for ind1, ind2 in zip(offspring[::2], offspring[1::2]):
            if random.random() <= CXPB:
                toolbox.mate(ind1, ind2)
            toolbox.mutate(ind1)
            toolbox.mutate(ind2)
            del ind1.fitness.values, ind2.fitness.values
        #offspring = algorithms.varOr(population, toolbox, 100, cxpb=CXPB, mutpb=MUTPB)

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit
            if (not solutionFound[0] and fit[0] == 0):
                solutionFound[0] = generation
            if (not solutionFound[1] and fit[1] == 0):
                solutionFound[1] = generation
            if (not solutionFound[2] and max(fit) == 0):
                solutionFound[2] = generation
            #if (fit[0] == 0):
            #    stop = True

        # Select the next generation population
        population = toolbox.select(population + offspring, len(population))

        # Add Fitness values to results
        if generation % freq == 0:
            for ind in population:
                results[generation].append(ind.fitness.values)
            # Log statistics for generation
            record = mstats.compile(population)
            logbook.record(gen=generation, evals=len(invalid_ind), **record)
            printText = "Generation " + str(generation) + ":\t" + str(
                logbook.stream) + "\t"
            for o in range(1, len(evalFunc) + 1):
                printText += str(
                    logbook.chapters["fitnessObj" + str(o)].stream) + "\t"
            printText += str(logbook.chapters["Conf"].stream)+"\t"\
                         +str(logbook.chapters["Accs"].stream)+"\t"\
                         +str(logbook.chapters["RoleCnt"].stream)+"\t"\
                         +str(logbook.chapters["URCnt"].stream)+"\t"\
                         +str(logbook.chapters["RPCnt"].stream)+"\t"\
                         +str(logbook.chapters["Interp"].stream)
            logger.info(printText)

        if generation % int((genStart + NGEN) / 10) == 0:
            if (printPopulations):
                pop_subdirectory = pop_directory + "\\Generation_" + str(
                    generation)
                #if not os.path.exists(pop_subdirectory):
                #    os.makedirs(pop_subdirectory)
                utils.saveDiversity(generation, population,
                                    pop_subdirectory + "_diversity.json")
                utils.savePopulation(generation, population,
                                     pop_subdirectory + "_population.pkl")
                #visual.showBestResult(offspring, genStart, Original, pop_subdirectory+"\\Individual", "Individual", "Individual from Generation "+str(generation), False, False, True, False)

        generation += 1

    utils.printDiversity(pop_directory, int((genStart + NGEN) / 10))
    utils.savePopulation(generation, population,
                         pop_subdirectory + "_population.pkl")

    end = datetime.datetime.now()
    timediff = end - start
    time.append(timediff.total_seconds())
    generation -= 1
    # Print final population
    #visual.printpopulation(population)
    logger.info("==> Generation " + str(generation))
    logger.info("DONE.\n")

    # Set Checkpoint
    fileExt = "_M"
    for obj in evalFunc:
        fileExt += "_" + obj[:5]
    fileExt += "_" + str(len(population)) + "_" + str(generation)
    '''if (checkpoint):
        fileExt = "_cont_" + str(len(population)) + "_" + str(generation) + "_" + str(CXPB) + "_" + str(MUTPB_All)
        pickleFile = "Checkpoint"+fileExt+".pkl"
    print("Save checkpoint into "+str(pickleFile))
    cp = dict(population=population,
              generation=generation,
              rndstate=random.getstate(),
              Original=Original,
              results=results,
              time=time,
              populationSize=populationSize,
              CXPB=CXPB,
              prevFiles=prevFiles,
              MUTPB_All=MUTPB_All,
              addRolePB=addRolePB,
              removeRolePB=removeRolePB,
              removeUserPB=removeUserPB,
              removePermissionPB=removePermissionPB,
              addUserPB=addUserPB,
              addPermissionPB=addPermissionPB,
              logbook=logbook)
    pickle.dump(cp, open(pickleFile, "wb"), 2)
    print("DONE.\n")'''

    top = toolbox.select(population, k=numberTopRoleModels)

    return population, results, generation, time, prevFiles, top, logbook, fileExt, solutionFound
コード例 #9
0
def evolution(Original,
              evalFunc,
              populationSize,
              tournsize,
              CXPB,
              MUTPB_All,
              addRolePB,
              removeRolePB,
              removeUserPB,
              removePermissionPB,
              addUserPB,
              addPermissionPB,
              NGEN,
              freq,
              numberTopRoleModels,
              optimization,
              untilSolutionFound=False,
              eval_weights=[],
              pickleFile="",
              checkpoint=False,
              prevFiles="",
              userAttributeValues=[],
              constraints=[],
              printPopulations=False,
              pop_directory="",
              fixedRoleCnt=0):

    logger.info("Prepare evolutionary algorithm...")
    time = []
    results = defaultdict(list)
    genStart = 0
    population = []

    # Create Logbook
    logbook = tools.Logbook()

    # Register Optimization
    if (evalFunc == "FBasic" or evalFunc == "FEdge"):
        creator.create("FitnessMinMax", base.Fitness,
                       weights=(1.0, ))  # MAXIMIZATION
    else:
        creator.create("FitnessMinMax", base.Fitness,
                       weights=(-1.0, ))  # MINIMIZATION
    creator.create("Individual", list, fitness=creator.FitnessMinMax)

    # Get Checkpoint
    '''if (checkpoint and len(prevFiles)!=0):
        prevFile = prevFiles[0]
        if (os.path.isfile(prevFile)):
            print("Read checkpoint...")
            cp = pickle.load(open(prevFile, "rb"))
            population = cp["population"]
            genStart = int(cp["generation"])
            Original = cp["Original"]
            results=cp["results"]
            time=cp["time"]
            prevFiles=cp["prevFiles"]
            prevFiles.append(prevFile)
            logbook=cp["logbook"]
            random.setstate(cp["rndstate"])
            print("DONE.\n")
        else:
            raise ValueError("Checkpoint file does not exit")
    else:
        print("Use checkpoint: False")
        checkpoint = False'''

    userSize = int(Original.shape[0])
    permissionSize = int(Original.shape[1])

    # Toolbox
    toolbox = base.Toolbox()
    # Register Chromosome Generator
    toolbox.register("chromosome",
                     init.generateChromosome,
                     maxRoles=userSize,
                     userSize=userSize,
                     permissionSize=permissionSize,
                     optimization=optimization,
                     fixedRoleCnt=fixedRoleCnt)
    # Register Individual and Population Initializers
    toolbox.register("individual", tools.initRepeat, creator.Individual,
                     toolbox.chromosome, 1)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)

    # Register Evaluation Function
    if (evalFunc == "FBasic"):
        toolbox.register("evaluate",
                         evals.evalFunc_FBasic,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)
    elif (evalFunc == "FEdge"):
        toolbox.register("evaluate",
                         evals.evalFunc_FEdge,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)

    elif (evalFunc == "FBasicMin"):
        toolbox.register("evaluate",
                         evals.evalFunc_FBasicMin,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)
    elif (evalFunc == "FEdgeMin"):
        toolbox.register("evaluate",
                         evals.evalFunc_FEdgeMin,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)

    elif (evalFunc == "FBasicMin_INT"):
        toolbox.register("evaluate",
                         evals.evalFunc_FBasicMin_INT,
                         Original=Original,
                         weights=eval_weights,
                         userAttributeValues=userAttributeValues,
                         constraints=constraints)
    elif (evalFunc == "FEdgeMin_INT"):
        toolbox.register("evaluate",
                         evals.evalFunc_FEdgeMin_INT,
                         Original=Original,
                         weights=eval_weights,
                         userAttributeValues=userAttributeValues,
                         constraints=constraints)

    elif (evalFunc == "WSC"):
        toolbox.register("evaluate",
                         evals.evalFunc_WSC,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)
    elif (evalFunc == "WSC_Star"):
        toolbox.register("evaluate",
                         evals.evalFunc_WSC_Star,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)
    elif (evalFunc == "WSC_Star_RoleDis"):
        toolbox.register("evaluate",
                         evals.evalFunc_WSC_Star_RoleDis,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)

    elif (evalFunc == "Violations"):
        toolbox.register("evaluate",
                         evals.evalFunc_Violations,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "AvgRoleConf_A"):
        toolbox.register("evaluate",
                         evals.evalFunc_AvgRoleConfViolations_Availability,
                         Original=Original,
                         constraints=constraints)

    elif (evalFunc == "Confidentiality"):
        toolbox.register("evaluate",
                         evals.evalFunc_Confidentiality,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "Availability"):
        toolbox.register("evaluate",
                         evals.evalFunc_Availability,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "RoleCnt"):
        toolbox.register("evaluate",
                         evals.evalFunc_RoleCnt,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "URCnt"):
        toolbox.register("evaluate",
                         evals.evalFunc_URCnt,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "RPCnt"):
        toolbox.register("evaluate",
                         evals.evalFunc_RPCnt,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "AvgRoleConf"):
        toolbox.register("evaluate",
                         evals.evalFunc_AvgRoleConfViolations,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "Interpretability"):
        toolbox.register("evaluate",
                         evals.evalFunc_Interpretability,
                         Original=Original,
                         userAttributeValues=userAttributeValues,
                         constraints=constraints)

    else:
        raise ValueError('Evaluation function not known')

    # Register Variation Operators
    toolbox.register("mate", operators.mateFunc, optimization=optimization)
    toolbox.register("mutate",
                     operators.mutFunc,
                     addRolePB=addRolePB,
                     removeRolePB=removeRolePB,
                     removeUserPB=removeUserPB,
                     removePermissionPB=removePermissionPB,
                     addUserPB=addUserPB,
                     addPermissionPB=addPermissionPB,
                     userSize=userSize,
                     permissionSize=permissionSize,
                     optimization=[optimization, optimization])
    toolbox.register("select", tools.selTournament, tournsize=tournsize)

    # Register Statistics
    statsFitness = tools.Statistics(key=lambda ind: ind.fitness.values[0])
    statsConf = tools.Statistics(
        key=lambda ind: statistics.Conf(ind[0], Original))
    statsAccs = tools.Statistics(
        key=lambda ind: statistics.Accs(ind[0], Original))
    statsRoleCnt = tools.Statistics(key=lambda ind: statistics.RoleCnt(ind[0]))
    statsURCnt = tools.Statistics(key=lambda ind: statistics.URCnt(ind[0]))
    statsRPCnt = tools.Statistics(key=lambda ind: statistics.RPCnt(ind[0]))
    statsInterp = tools.Statistics(
        key=lambda ind: statistics.Interp(ind[0], userAttributeValues))
    mstats = tools.MultiStatistics(Fitness=statsFitness,
                                   Conf=statsConf,
                                   Accs=statsAccs,
                                   RoleCnt=statsRoleCnt,
                                   URCnt=statsURCnt,
                                   RPCnt=statsRPCnt,
                                   Interp=statsInterp)
    mstats.register("avg", numpy.mean)
    mstats.register("std", numpy.std)
    mstats.register("min", numpy.min)
    mstats.register("max", numpy.max)
    logbook.header = "gen", "evals"
    logbook.chapters["Fitness"].header = "min", "avg", "max", "std"
    logbook.chapters["Conf"].header = "min", "avg", "max", "std"
    logbook.chapters["Accs"].header = "min", "avg", "max", "std"
    logbook.chapters["RoleCnt"].header = "min", "avg", "max", "std"
    logbook.chapters["URCnt"].header = "min", "avg", "max", "std"
    logbook.chapters["RPCnt"].header = "min", "avg", "max", "std"
    logbook.chapters["Interp"].header = "min", "avg", "max", "std"

    # Creating the population
    if (not population):
        logger.info("Generate new population of " + str(populationSize) +
                    " individuals")
        population = toolbox.population(n=populationSize)

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    if (evalFunc == "WSC_Star_RoleDis"):
        fitnesses = [
            toolbox.evaluate(population=population, individual=ind)
            for ind in invalid_ind
        ]
    else:
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    # Save population in JSON file
    if (printPopulations):
        pop_subdirectory = pop_directory + "\\Generation_" + str(genStart)
        #if not os.path.exists(pop_subdirectory):
        #    os.makedirs(pop_subdirectory)
        utils.saveDiversity(genStart, population,
                            pop_subdirectory + "_diversity.json")
        utils.savePopulation(genStart, population,
                             pop_subdirectory + "_population.pkl")
        #visual.showBestResult(population, genStart, Original, pop_subdirectory+"\\Individual", "Individual", "Individual from Generation "+str(genStart), False, False, True, False)

    # Log statistics for first generation
    if ((len(logbook) == 0)
            or (logbook.pop(len(logbook) - 1)["gen"] != genStart)):
        record = mstats.compile(population)
        logbook.record(gen=genStart, evals=len(invalid_ind), **record)
        logger.info("Generation " + str(genStart) + ":\t" +
                    str(logbook.stream) + "\n" +
                    str(logbook.chapters["Fitness"].stream) + "\n" +
                    str(logbook.chapters["Conf"].stream) + "\n" +
                    str(logbook.chapters["Accs"].stream) + "\n" +
                    str(logbook.chapters["RoleCnt"].stream) + "\n" +
                    str(logbook.chapters["URCnt"].stream) + "\n" +
                    str(logbook.chapters["RPCnt"].stream) + "\n" +
                    str(logbook.chapters["Interp"].stream))

    # Begin the evolution
    logger.info("Start evolution...")
    start = datetime.datetime.now()
    logger.info("Start time: " + str(start))
    #hof = tools.HallOfFame(maxsize=1)

    generation = genStart + 1
    stop = False
    logger.info("Start evolution with Generation " + str(genStart))
    while ((not stop) and (generation <= genStart + NGEN)):
        population = toolbox.select(population, k=len(population))
        offspring = algorithms.varAnd(population,
                                      toolbox,
                                      cxpb=CXPB,
                                      mutpb=MUTPB_All)

        # Evaluate individuals, which need a evaluation
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        if (evalFunc == "WSC_Star_RoleDis"):
            fitnesses = [
                toolbox.evaluate(population=offspring, individual=ind)
                for ind in invalid_ind
            ]
        else:
            fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit
            # Stop condition
            if (untilSolutionFound):
                array = decoder.resolveRoleModelChromosomeIntoBoolArray(
                    ind[0], Original.shape[0], Original.shape[1])
                conf, accs = matrixOps.compareMatrices(array, Original)
                stop = (conf + accs) == 0

        # Add Fitness values to results
        if generation % freq == 0:
            for ind in offspring:
                results[generation].append(ind.fitness.values)
            # Log statistics for generation
            '''record = stats.compile(offspring)
            logbook.record(gen=generation, evals=len(invalids), **record)
            logger.info("Generation "+str(generation)+":\t"+str(logbook.stream))'''
            record = mstats.compile(offspring)
            logbook.record(gen=generation, evals=len(invalid_ind), **record)
            logger.info("Generation " + str(generation) + ":\t" +
                        str(logbook.stream) + "\t" +
                        str(logbook.chapters["Fitness"].stream) + "\t\t" +
                        str(logbook.chapters["Conf"].stream) + "\t\t" +
                        str(logbook.chapters["Accs"].stream) + "\t\t" +
                        str(logbook.chapters["RoleCnt"].stream) + "\t\t" +
                        str(logbook.chapters["URCnt"].stream) + "\t\t" +
                        str(logbook.chapters["RPCnt"].stream) + "\t\t" +
                        str(logbook.chapters["Interp"].stream))
        if generation % int((genStart + NGEN) / 10) == 0:
            if (printPopulations):
                pop_subdirectory = pop_directory + "\\Generation_" + str(
                    generation)
                #if not os.path.exists(pop_subdirectory):
                #    os.makedirs(pop_subdirectory)
                utils.saveDiversity(generation, population,
                                    pop_subdirectory + "_diversity.json")
                #utils.savePopulation(generation,population,pop_subdirectory+"_population.pkl")
                #visual.showBestResult(offspring, genStart, Original, pop_subdirectory+"\\Individual", "Individual", "Individual from Generation "+str(generation), False, False, True, False)

        population = offspring
        generation += 1

    utils.printDiversity(pop_directory, int((genStart + NGEN) / 10))
    utils.savePopulation(generation, population,
                         pop_subdirectory + "_population.pkl")

    end = datetime.datetime.now()
    timediff = end - start
    time.append(timediff.total_seconds())
    generation -= 1
    # Print final population
    #visual.printpopulation(population)
    logger.info("==> Generation " + str(generation))
    logger.info("DONE.\n")

    # Set Checkpoint
    fileExt = "_S_" + evalFunc + "_" + str(
        len(population)) + "_" + str(generation)
    '''
    if (checkpoint):
        fileExt = "_cont_" + str(len(population)) + "_" + str(generation) + "_" + str(CXPB) + "_" + str(MUTPB_All)
        pickleFile = "Checkpoint"+fileExt+".pkl"
    print("Save checkpoint into "+str(pickleFile))
    cp = dict(population=population,
              generation=generation,
              rndstate=random.getstate(),
              Original=Original,
              results=results,
              time=time,
              populationSize=populationSize,
              CXPB=CXPB,
              prevFiles=prevFiles,
              MUTPB_All=MUTPB_All,
              addRolePB=addRolePB,
              removeRolePB=removeRolePB,
              removeUserPB=removeUserPB,
              removePermissionPB=removePermissionPB,
              addUserPB=addUserPB,
              addPermissionPB=addPermissionPB,
              logbook=logbook)
    pickle.dump(cp, open(pickleFile, "wb"), 2)
    print("DONE.\n")
    '''

    return population, results, generation, time, prevFiles, tools.selBest(
        population, k=numberTopRoleModels), logbook, fileExt