def loadFAMEInput(path, moleculeDict=None): """ Load the contents of a FAME input file into the MEASURE object. FAME is an early version of MEASURE written in Fortran and used by RMG-Java. This script enables importing FAME input files into MEASURE so we can use the additional functionality that MEASURE provides. Note that it is mostly designed to load the FAME input files generated automatically by RMG-Java, and may not load hand-crafted FAME input files. If you specify a `moleculeDict`, then this script will use it to associate the species with their structures. """ def readMeaningfulLine(f): line = f.readline() while line != '': line = line.strip() if len(line) > 0 and line[0] != '#': return line else: line = f.readline() return '' moleculeDict = moleculeDict or {} logging.info('Loading file "{0}"...'.format(path)) f = open(path) job = PressureDependenceJob(network=None) # Read method method = readMeaningfulLine(f).lower() if method == 'modifiedstrongcollision': job.method = 'modified strong collision' elif method == 'reservoirstate': job.method = 'reservoir state' # Read temperatures Tcount, Tunits, Tmin, Tmax = readMeaningfulLine(f).split() job.Tmin = Quantity(float(Tmin), Tunits) job.Tmax = Quantity(float(Tmax), Tunits) job.Tcount = int(Tcount) Tlist = [] for i in range(int(Tcount)): Tlist.append(float(readMeaningfulLine(f))) job.Tlist = Quantity(Tlist, Tunits) # Read pressures Pcount, Punits, Pmin, Pmax = readMeaningfulLine(f).split() job.Pmin = Quantity(float(Pmin), Punits) job.Pmax = Quantity(float(Pmax), Punits) job.Pcount = int(Pcount) Plist = [] for i in range(int(Pcount)): Plist.append(float(readMeaningfulLine(f))) job.Plist = Quantity(Plist, Punits) # Read interpolation model model = readMeaningfulLine(f).split() if model[0].lower() == 'chebyshev': job.interpolationModel = ('chebyshev', int(model[1]), int(model[2])) elif model[0].lower() == 'pdeparrhenius': job.interpolationModel = ('pdeparrhenius',) # Read grain size or number of grains job.minimumGrainCount = 0 job.maximumGrainSize = None for i in range(2): data = readMeaningfulLine(f).split() if data[0].lower() == 'numgrains': job.minimumGrainCount = int(data[1]) elif data[0].lower() == 'grainsize': job.maximumGrainSize = (float(data[2]), data[1]) # A FAME file is almost certainly created during an RMG job, so use RMG mode job.rmgmode = True # Create the Network job.network = Network() # Read collision model data = readMeaningfulLine(f) assert data.lower() == 'singleexpdown' alpha0units, alpha0 = readMeaningfulLine(f).split() T0units, T0 = readMeaningfulLine(f).split() n = readMeaningfulLine(f) energyTransferModel = SingleExponentialDown( alpha0 = Quantity(float(alpha0), alpha0units), T0 = Quantity(float(T0), T0units), n = float(n), ) speciesDict = {} # Read bath gas parameters bathGas = Species(label='bath_gas', energyTransferModel=energyTransferModel) molWtunits, molWt = readMeaningfulLine(f).split() if molWtunits == 'u': molWtunits = 'amu' bathGas.molecularWeight = Quantity(float(molWt), molWtunits) sigmaLJunits, sigmaLJ = readMeaningfulLine(f).split() epsilonLJunits, epsilonLJ = readMeaningfulLine(f).split() assert epsilonLJunits == 'J' bathGas.transportData = TransportData( sigma = Quantity(float(sigmaLJ), sigmaLJunits), epsilon = Quantity(float(epsilonLJ) / constants.kB, 'K'), ) job.network.bathGas = {bathGas: 1.0} # Read species data Nspec = int(readMeaningfulLine(f)) for i in range(Nspec): species = Species() species.conformer = Conformer() species.energyTransferModel = energyTransferModel # Read species label species.label = readMeaningfulLine(f) speciesDict[species.label] = species if species.label in moleculeDict: species.molecule = [moleculeDict[species.label]] # Read species E0 E0units, E0 = readMeaningfulLine(f).split() species.conformer.E0 = Quantity(float(E0), E0units) species.conformer.E0.units = 'kJ/mol' # Read species thermo data H298units, H298 = readMeaningfulLine(f).split() S298units, S298 = readMeaningfulLine(f).split() Cpcount, Cpunits = readMeaningfulLine(f).split() Cpdata = [] for i in range(int(Cpcount)): Cpdata.append(float(readMeaningfulLine(f))) if S298units == 'J/mol*K': S298units = 'J/(mol*K)' if Cpunits == 'J/mol*K': Cpunits = 'J/(mol*K)' species.thermo = ThermoData( H298 = Quantity(float(H298), H298units), S298 = Quantity(float(S298), S298units), Tdata = Quantity([300,400,500,600,800,1000,1500], "K"), Cpdata = Quantity(Cpdata, Cpunits), Cp0 = (Cpdata[0], Cpunits), CpInf = (Cpdata[-1], Cpunits), ) # Read species collision parameters molWtunits, molWt = readMeaningfulLine(f).split() if molWtunits == 'u': molWtunits = 'amu' species.molecularWeight = Quantity(float(molWt), molWtunits) sigmaLJunits, sigmaLJ = readMeaningfulLine(f).split() epsilonLJunits, epsilonLJ = readMeaningfulLine(f).split() assert epsilonLJunits == 'J' species.transportData = TransportData( sigma = Quantity(float(sigmaLJ), sigmaLJunits), epsilon = Quantity(float(epsilonLJ) / constants.kB, 'K'), ) # Read species vibrational frequencies freqCount, freqUnits = readMeaningfulLine(f).split() frequencies = [] for j in range(int(freqCount)): frequencies.append(float(readMeaningfulLine(f))) species.conformer.modes.append(HarmonicOscillator( frequencies = Quantity(frequencies, freqUnits), )) # Read species external rotors rotCount, rotUnits = readMeaningfulLine(f).split() if int(rotCount) > 0: raise NotImplementedError('Cannot handle external rotational modes in FAME input.') # Read species internal rotors freqCount, freqUnits = readMeaningfulLine(f).split() frequencies = [] for j in range(int(freqCount)): frequencies.append(float(readMeaningfulLine(f))) barrCount, barrUnits = readMeaningfulLine(f).split() barriers = [] for j in range(int(barrCount)): barriers.append(float(readMeaningfulLine(f))) if barrUnits == 'cm^-1': barrUnits = 'J/mol' barriers = [barr * constants.h * constants.c * constants.Na * 100. for barr in barriers] elif barrUnits in ['Hz', 's^-1']: barrUnits = 'J/mol' barriers = [barr * constants.h * constants.Na for barr in barriers] elif barrUnits != 'J/mol': raise Exception('Unexpected units "{0}" for hindered rotor barrier height.'.format(barrUnits)) inertia = [V0 / 2.0 / (nu * constants.c * 100.)**2 / constants.Na for nu, V0 in zip(frequencies, barriers)] for I, V0 in zip(inertia, barriers): species.conformer.modes.append(HinderedRotor( inertia = Quantity(I,"kg*m^2"), barrier = Quantity(V0,barrUnits), symmetry = 1, semiclassical = False, )) # Read overall symmetry number species.conformer.spinMultiplicity = int(readMeaningfulLine(f)) # Read isomer, reactant channel, and product channel data Nisom = int(readMeaningfulLine(f)) Nreac = int(readMeaningfulLine(f)) Nprod = int(readMeaningfulLine(f)) for i in range(Nisom): data = readMeaningfulLine(f).split() assert data[0] == '1' job.network.isomers.append(speciesDict[data[1]]) for i in range(Nreac): data = readMeaningfulLine(f).split() assert data[0] == '2' job.network.reactants.append([speciesDict[data[1]], speciesDict[data[2]]]) for i in range(Nprod): data = readMeaningfulLine(f).split() if data[0] == '1': job.network.products.append([speciesDict[data[1]]]) elif data[0] == '2': job.network.products.append([speciesDict[data[1]], speciesDict[data[2]]]) # Read path reactions Nrxn = int(readMeaningfulLine(f)) for i in range(Nrxn): # Read and ignore reaction equation equation = readMeaningfulLine(f) reaction = Reaction(transitionState=TransitionState(), reversible=True) job.network.pathReactions.append(reaction) reaction.transitionState.conformer = Conformer() # Read reactant and product indices data = readMeaningfulLine(f).split() reac = int(data[0]) - 1 prod = int(data[1]) - 1 if reac < Nisom: reaction.reactants = [job.network.isomers[reac]] elif reac < Nisom+Nreac: reaction.reactants = job.network.reactants[reac-Nisom] else: reaction.reactants = job.network.products[reac-Nisom-Nreac] if prod < Nisom: reaction.products = [job.network.isomers[prod]] elif prod < Nisom+Nreac: reaction.products = job.network.reactants[prod-Nisom] else: reaction.products = job.network.products[prod-Nisom-Nreac] # Read reaction E0 E0units, E0 = readMeaningfulLine(f).split() reaction.transitionState.conformer.E0 = Quantity(float(E0), E0units) reaction.transitionState.conformer.E0.units = 'kJ/mol' # Read high-pressure limit kinetics data = readMeaningfulLine(f) assert data.lower() == 'arrhenius' Aunits, A = readMeaningfulLine(f).split() if '/' in Aunits: index = Aunits.find('/') Aunits = '{0}/({1})'.format(Aunits[0:index], Aunits[index+1:]) Eaunits, Ea = readMeaningfulLine(f).split() n = readMeaningfulLine(f) reaction.kinetics = Arrhenius( A = Quantity(float(A), Aunits), Ea = Quantity(float(Ea), Eaunits), n = Quantity(float(n)), ) reaction.kinetics.Ea.units = 'kJ/mol' f.close() job.network.isomers = [Configuration(isomer) for isomer in job.network.isomers] job.network.reactants = [Configuration(*reactants) for reactants in job.network.reactants] job.network.products = [Configuration(*products) for products in job.network.products] return job
def update_configurations(self, reaction_model): """ Sort the reactants and products of each of the network's path reactions into isomers, reactant channels, and product channels. You must pass the current `reaction_model` because some decisions on sorting are made based on which species are in the model core. """ reactants = [] products = [] # All explored species are isomers isomers = self.explored[:] # The source configuration is an isomer (if unimolecular) or a reactant channel (if bimolecular) if len(self.source) == 1: # The source is a unimolecular isomer if self.source[0] not in isomers: isomers.insert(0, self.source[0]) else: # The source is a bimolecular reactant channel self.source.sort() reactants.append(self.source) # Iterate over path reactions and make sure each set of reactants and products is classified for rxn in self.path_reactions: # Sort bimolecular configurations so that we always encounter them in the # same order # The actual order doesn't matter, as long as it is consistent rxn.reactants.sort() rxn.products.sort() # Reactants of the path reaction if len(rxn.reactants) == 1 and rxn.reactants[ 0] not in isomers and rxn.reactants not in products: # We've encountered a unimolecular reactant that is not classified # These are always product channels (since they would be in source or explored otherwise) products.append(rxn.reactants) elif len( rxn.reactants ) > 1 and rxn.reactants not in reactants and rxn.reactants not in products: # We've encountered bimolecular reactants that are not classified if all([ reactant in reaction_model.core.species for reactant in rxn.reactants ]): # Both reactants are in the core, so treat as reactant channel reactants.append(rxn.reactants) else: # One or more reactants is an edge species, so treat as product channel products.append(rxn.reactants) # Products of the path reaction if len(rxn.products) == 1 and rxn.products[ 0] not in isomers and rxn.products not in products: # We've encountered a unimolecular product that is not classified # These are always product channels (since they would be in source or explored otherwise) products.append(rxn.products) elif len( rxn.products ) > 1 and rxn.products not in reactants and rxn.products not in products: # We've encountered bimolecular products that are not classified if all([ product in reaction_model.core.species for product in rxn.products ]): # Both products are in the core, so treat as reactant channel reactants.append(rxn.products) else: # One or more reactants is an edge species, so treat as product channel products.append(rxn.products) # Clear existing configurations self.isomers = [] self.reactants = [] self.products = [] # Make a configuration object for each for isomer in isomers: self.isomers.append(Configuration(isomer)) for reactant in reactants: self.reactants.append(Configuration(*reactant)) for product in products: self.products.append(Configuration(*product))