def setUpClass(cls): """This method is run once before all tests in this class.""" test_dir = rmgpy.settings['test_data.directory'] data_dir = os.path.join(test_dir, 'testing_database') chem_dir = os.path.join(test_dir, 'parsing_data') chemkin_file = os.path.join(chem_dir, 'chem_annotated.inp') spc_dict = os.path.join(chem_dir, 'species_dictionary.txt') cls.uncertainty = Uncertainty(outputDirectory='chemDir') cls.uncertainty.loadModel(chemkin_file, spc_dict) # load database properly cls.uncertainty.database = RMGDatabase() cls.uncertainty.database.load( data_dir, kineticsFamilies=[ '1,2_shiftC', '6_membered_central_C-C_shift', 'Disproportionation', 'H_Abstraction', 'Intra_ene_reaction', 'intra_H_migration', 'Intra_R_Add_Exo_scission', 'intra_substitutionS_isomerization', 'R_Addition_MultipleBond', 'R_Recombination' ], kineticsDepositories=['training'], thermoLibraries=['primaryThermoLibrary'], reactionLibraries=['GRI-Mech3.0'], ) # Prepare the database by loading training reactions and averaging the rate rules verbosely for family in cls.uncertainty.database.kinetics.families.itervalues(): family.addKineticsRulesFromTrainingSet( thermoDatabase=cls.uncertainty.database.thermo) family.fillKineticsRulesByAveragingUp(verbose=True)
def setUpClass(cls): """This method is run once before all tests in this class.""" test_dir = rmgpy.settings['test_data.directory'] data_dir = os.path.join(test_dir, 'testing_database') chem_dir = os.path.join(test_dir, 'parsing_data') chemkin_file = os.path.join(chem_dir, 'chem_annotated.inp') spc_dict = os.path.join(chem_dir, 'species_dictionary.txt') cls.uncertainty = Uncertainty(outputDirectory='chemDir') cls.uncertainty.loadModel(chemkin_file, spc_dict) # load database properly cls.uncertainty.database = RMGDatabase() cls.uncertainty.database.load( data_dir, kineticsFamilies='all', kineticsDepositories=['training'], thermoLibraries=['primaryThermoLibrary'], reactionLibraries=['GRI-Mech3.0'], ) # Prepare the database by loading training reactions and averaging the rate rules verbosely for family in cls.uncertainty.database.kinetics.families.itervalues(): family.addKineticsRulesFromTrainingSet( thermoDatabase=cls.uncertainty.database.thermo) family.fillKineticsRulesByAveragingUp(verbose=True)