class Config(object): gpu_id = 2 os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) num_workers = 8 episode_size = 15 test_episode = 600 test_avg_num = 5 feature_encoder, relation_network = CNNEncoder(), RelationNetwork() # model_path = "../models/two_ic_ufsl_2net_res_sgd_acc" # model_fe_name = "0_2100_64_5_1_500_200_512_1_1.0_1.0_fe_5way_1shot.pkl" # model_rn_name = "0_2100_64_5_1_500_200_512_1_1.0_1.0_rn_5way_1shot.pkl" model_path = "../models/two_ic_ufsl_2net_res_sgd_acc_duli" model_fe_name = "2_2100_64_5_1_500_200_512_1_1.0_1.0_fe_5way_1shot.pkl" model_rn_name = "2_2100_64_5_1_500_200_512_1_1.0_1.0_rn_5way_1shot.pkl" fe_dir = Tools.new_dir(os.path.join(model_path, model_fe_name)) rn_dir = Tools.new_dir(os.path.join(model_path, model_rn_name)) if "Linux" in platform.platform(): data_root = '/mnt/4T/Data/data/miniImagenet' if not os.path.isdir(data_root): data_root = '/media/ubuntu/4T/ALISURE/Data/miniImagenet' else: data_root = "F:\\data\\miniImagenet" pass
class Config(object): os.environ["CUDA_VISIBLE_DEVICES"] = "0" # train_epoch = 300 train_epoch = 180 learning_rate = 0.001 num_workers = 8 val_freq = 10 num_way = 5 num_shot = 1 batch_size = 64 episode_size = 15 test_episode = 600 feature_encoder, relation_network = CNNEncoder(), RelationNetwork() # feature_encoder, relation_network = CNNEncoder1(), RelationNetwork1() model_name = "{}_{}_{}_{}".format(train_epoch, batch_size, num_way, num_shot) if "Linux" in platform.platform(): data_root = '/mnt/4T/Data/data/miniImagenet' if not os.path.isdir(data_root): data_root = '/media/ubuntu/4T/ALISURE/Data/miniImagenet' else: data_root = "F:\\data\\miniImagenet" fe_dir = Tools.new_dir("../models/fsl/{}_fe_{}way_{}shot.pkl".format( model_name, num_way, num_shot)) rn_dir = Tools.new_dir("../models/fsl/{}_rn_{}way_{}shot.pkl".format( model_name, num_way, num_shot)) pass
class Config(object): gpu_id = 0 os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) num_workers = 16 num_way = 5 num_shot = 1 batch_size = 64 val_freq = 10 episode_size = 15 test_episode = 600 feature_encoder, relation_network = CNNEncoder(), RelationNetwork() # ic ic_out_dim = 512 # ic_out_dim = 2560 ic_ratio = 1 learning_rate = 0.01 # loss_fsl_ratio = 10.0 # loss_ic_ratio = 0.1 loss_fsl_ratio = 1.0 loss_ic_ratio = 1.0 # train_epoch = 500 # first_epoch, t_epoch = 300, 150 # adjust_learning_rate = RunnerTool.adjust_learning_rate2 train_epoch = 2100 first_epoch, t_epoch = 500, 200 adjust_learning_rate = RunnerTool.adjust_learning_rate1 model_name = "{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}".format( gpu_id, train_epoch, batch_size, num_way, num_shot, first_epoch, t_epoch, ic_out_dim, ic_ratio, loss_fsl_ratio, loss_ic_ratio) if "Linux" in platform.platform(): data_root = '/mnt/4T/Data/data/miniImagenet' if not os.path.isdir(data_root): data_root = '/media/ubuntu/4T/ALISURE/Data/miniImagenet' else: data_root = "F:\\data\\miniImagenet" _root_path = "../models/two_ic_ufsl_2net_res_sgd_acc" fe_dir = Tools.new_dir("{}/{}_fe_{}way_{}shot.pkl".format( _root_path, model_name, num_way, num_shot)) rn_dir = Tools.new_dir("{}/{}_rn_{}way_{}shot.pkl".format( _root_path, model_name, num_way, num_shot)) ic_dir = Tools.new_dir("{}/{}_ic_{}way_{}shot.pkl".format( _root_path, model_name, num_way, num_shot)) pass
class Config(object): os.environ["CUDA_VISIBLE_DEVICES"] = "2" learning_rate = 0.01 num_workers = 8 num_way = 5 num_shot = 1 batch_size = 64 val_freq = 10 episode_size = 15 test_episode = 600 # ic ic_in_dim = 64 ic_out_dim = 512 ic_ratio = 1 loss_fsl_ratio = 10.0 loss_ic_ratio = 0.1 train_epoch = 600 first_epoch, t_epoch = 300, 150 adjust_learning_rate = RunnerTool.adjust_learning_rate2 feature_encoder, relation_network = CNNEncoder(), RelationNetwork() # feature_encoder, relation_network = CNNEncoder1(), RelationNetwork1() model_name = "2_{}_{}_{}_{}_{}_{}_{}_{}_{}".format( train_epoch, batch_size, first_epoch, t_epoch, ic_in_dim, ic_out_dim, ic_ratio, loss_fsl_ratio, loss_ic_ratio) if "Linux" in platform.platform(): data_root = '/mnt/4T/Data/data/miniImagenet' if not os.path.isdir(data_root): data_root = '/media/ubuntu/4T/ALISURE/Data/miniImagenet' else: data_root = "F:\\data\\miniImagenet" fe_dir = Tools.new_dir( "../models/two_ic_fsl_sgd/{}_fe_{}way_{}shot.pkl".format( model_name, num_way, num_shot)) rn_dir = Tools.new_dir( "../models/two_ic_fsl_sgd/{}_rn_{}way_{}shot.pkl".format( model_name, num_way, num_shot)) ic_dir = Tools.new_dir( "../models/two_ic_fsl_sgd/{}_ic_{}way_{}shot.pkl".format( model_name, num_way, num_shot)) pass
class Config(object): os.environ["CUDA_VISIBLE_DEVICES"] = "2" num_workers = 8 batch_size = 64 val_freq = 2 learning_rate = 0.001 learning_rate_small = 0.001 num_way = 5 num_shot = 1 episode_size = 15 test_episode = 600 feature_encoder, relation_network = CNNEncoder(), RelationNetwork() fe_pretrain = "../models/ic/1_64_512_1_500_200_0.01_fe.pkl" ic_pretrain = "../models/ic/1_64_512_1_500_200_0.01_ic.pkl" # ic ic_in_dim = 64 ic_out_dim = 512 ic_ratio = 2 train_epoch = 300 loss_fsl_ratio = 10.0 loss_ic_ratio = 0.1 model_name = "4_{}_{}_{}_{}_{}_{}_{}_{}_{}".format( train_epoch, batch_size, num_way, num_shot, ic_in_dim, ic_out_dim, ic_ratio, loss_fsl_ratio, loss_ic_ratio) if "Linux" in platform.platform(): data_root = '/mnt/4T/Data/data/miniImagenet' if not os.path.isdir(data_root): data_root = '/media/ubuntu/4T/ALISURE/Data/miniImagenet' else: data_root = "F:\\data\\miniImagenet" root_path = "../models/two_ic_ufsl_pretrain" fe_dir = Tools.new_dir("{}/{}_fe_{}way_{}shot.pkl".format( root_path, model_name, num_way, num_shot)) rn_dir = Tools.new_dir("{}/{}_rn_{}way_{}shot.pkl".format( root_path, model_name, num_way, num_shot)) ic_dir = Tools.new_dir("{}/{}_ic_{}way_{}shot.pkl".format( root_path, model_name, num_way, num_shot)) pass
class Config(object): gpu_id = 3 os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) num_workers = 24 batch_size = 64 val_freq = 10 learning_rate = 0.001 num_way = 5 num_shot = 1 episode_size = 15 test_episode = 600 feature_encoder, relation_network = CNNEncoder(), RelationNetwork() # ic ic_in_dim = 64 ic_out_dim = 512 ic_ratio = 1 train_epoch = 900 loss_fsl_ratio = 10.0 loss_ic_ratio = 0.1 model_name = "{}_{}_{}_{}_{}_{}_{}_{}_{}_{}".format( gpu_id, train_epoch, batch_size, num_way, num_shot, ic_in_dim, ic_out_dim, ic_ratio, loss_fsl_ratio, loss_ic_ratio) if "Linux" in platform.platform(): data_root = '/mnt/4T/Data/data/miniImagenet' if not os.path.isdir(data_root): data_root = '/media/ubuntu/4T/ALISURE/Data/miniImagenet' else: data_root = "F:\\data\\miniImagenet" fe_dir = Tools.new_dir( "../models/two_ic_ufsl_acc/{}_fe_{}way_{}shot.pkl".format( model_name, num_way, num_shot)) rn_dir = Tools.new_dir( "../models/two_ic_ufsl_acc/{}_rn_{}way_{}shot.pkl".format( model_name, num_way, num_shot)) ic_dir = Tools.new_dir( "../models/two_ic_ufsl_acc/{}_ic_{}way_{}shot.pkl".format( model_name, num_way, num_shot)) pass
class Config(object): gpu_id = 0 os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) num_workers = 8 num_way = 5 num_shot = 1 batch_size = 64 val_freq = 10 episode_size = 15 test_episode = 600 learning_rate = 0.01 loss_fsl_ratio = 1.0 loss_ic_ratio = 1.0 train_epoch = 2100 first_epoch, t_epoch = 500, 200 adjust_learning_rate = RunnerTool.adjust_learning_rate1 # ic ic_out_dim = 512 ic_ratio = 1 ############################################################################################################## # resnet = resnet18 resnet = resnet34 feature_encoder, relation_network = CNNEncoder(), RelationNetwork() is_png = True # is_png = False # modify_head = False modify_head = True ############################################################################################################## model_name = "{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}{}{}".format( gpu_id, train_epoch, batch_size, num_way, num_shot, first_epoch, t_epoch, ic_out_dim, ic_ratio, loss_fsl_ratio, loss_ic_ratio, "_head" if modify_head else "", "_png" if is_png else "") if "Linux" in platform.platform(): data_root = '/mnt/4T/Data/data/miniImagenet' if not os.path.isdir(data_root): data_root = '/media/ubuntu/4T/ALISURE/Data/miniImagenet' else: data_root = "F:\\data\\miniImagenet" data_root = os.path.join(data_root, "miniImageNet_png") if is_png else data_root Tools.print(data_root) _root_path = "../models/two_ic_ufsl_2net_res_sgd_acc_duli" fe_dir = Tools.new_dir("{}/{}_fe_{}way_{}shot.pkl".format( _root_path, model_name, num_way, num_shot)) rn_dir = Tools.new_dir("{}/{}_rn_{}way_{}shot.pkl".format( _root_path, model_name, num_way, num_shot)) ic_dir = Tools.new_dir("{}/{}_ic_{}way_{}shot.pkl".format( _root_path, model_name, num_way, num_shot)) pass